
Enabling Location-aware Operation
in Decentralized IoT Communications

Matteo Visotto+ and Luca Mottola+→†
+Politecnico di Milano (Italy), →RI.SE Computer Science (Sweden), †Uppsala University (Sweden)

ABSTRACT
We present an e!cient design to enable location-aware operation
in decentralized IoT communications. Large-scale IoT systems rep-
resent the backbone of a smart city functioning, allowing pervasive
environmental sensing across devices and networks. However, ex-
isting IoT communication systems are largely driven by data types
and miss out on embracing data location, which is fundamental in
environment sensing. To address this issue, we demonstrate it is
possible to e!ciently embed a notion of location within the Zenoh
protocol. We make it possible to steer message routing based on
both data type and location, yet without altering the existing rout-
ing core and message forwarding, unlike most existing solutions.
We also present three encoding techniques for location data, each of
them representing a di"erent trade-o" between expressiveness and
performance overhead. Our evaluation uses a virtualized environ-
ment and real-world packet traces of heterogeneous networks. We
show, for example, that our design decreases the average message
latency by more than 50% when routing data also based on location,
while increasing throughput, compared to two di"erent baselines.

CCS CONCEPTS
• Networks ↑ Network protocol design; Location based ser-
vices.

KEYWORDS
Location-awareness, IoT, Pub/Sub, Req/Resp, Protocol, Zenoh
ACM Reference Format:
Matteo Visotto+ and Luca Mottola+→†, +Politecnico di Milano (Italy), →RI.SE 
Computer Science (Sweden), †Uppsala University (Sweden). 2024. Enabling 
Location-aware Operation in Decentralized IoT Communications. In The
2nd Workshop on Advances in Environmental Sensing Systems for Smart Cities 
Workshop Chairs (EnvSys ’24), June 3–7, 2024, Minato-ku, Tokyo, Japan. ACM, 
New York, NY, USA, 6 pages. https://doi.org/10.1145/3661813.3661817

1 INTRODUCTION
Large-scale Internet of Things (IoT) systems form the backbone of
a smart city operation. Embedded sensors and edge devices enable
#ne-grained sensing of the city environment and are instrumental
to improve the use of resources and assets, to investigate the impact
of human activities, and to understand climate changes [6].
Problem. Compared to the complexity of environment sensing
in smart cities, the underlying IoT network support falls short

This work is licensed under a Creative Commons Attribution International 4.0 
License.
EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0659-2/24/06
https://doi.org/10.1145/3661813.3661817

Figure 1: Air quality sensing in Milano (Italy). Existing IoT
protocols incur in large network overheadwhen the locations of interest
arbitrarily intersect the existing logical slicing, as in the red rectangle.

of expectations. Most IoT protocols, indeed, only support quite
straightforward communication paradigms, which may often result
in suboptimal performance, as we further articulate in Sec. 2.

Consider for instance an air quality sensing application for
the city of Milano (Italy): a setting we have #rst-hand experience
with [4]. An example air quality map is shown in Fig. 1. Milano is
split into di"erent municipalities. Air quality sensors throughout
the city are characterized by their GPS coordinates and the mu-
nicipality they belong to. Existing protocols, for instance, those
supporting the Publish/Subscribe (Pub/Sub) paradigm, su!ce as
long as data is pulled from air quality sensors belonging to a speci!ed
subset of municipalities, as is the case for the three colored munici-
palities in Fig. 1. Similar considerations equally apply to protocols
providing Request/Response (Req/Resp) forms of interaction.

Most existing protocols, however, o"er no native support to
reason on the actual location of data, besides some coarse-grained
logical location. Pulling data from a programmer-de!ned area that
intersects the logical slicing in arbitrary ways, such as the red
rectangle of Fig. 1, is extremely complex. Existing solutions force
developers to obtain data from the three colored municipalities
anyway and discard messages originating outside of the red rec-
tangle, but within the three considered municipalities. This incurs
additional programming e"ort and, most importantly, potentially
generates unnecessary network load.
Solution.We present a design that enables location-aware operation
in an existing IoT protocols without changing the routing core and
message forwarding, as described in Sec. 3. Such a feature is crucial
because it lets us bene#t from optimizations and testing of the
existing protocol implementation. We achieve this by modifying
the protocol architecture in a way that completely decouples the
location-speci#c functionality from the rest of the protocol. As a
by-product of this, we gain the freedom of deciding how to encode
location information. We present three example encodings with
di"erent trade-o"s between expressivity and overhead. We can also
make (non-)location-aware messages co-exist and retain backward
compatibility with the original protocol implementation.

We implement a prototype on top of Zenoh [19], one of the few
decentralized IoT protocols supporting both Req/Resp and Pub/Sub

13

https://doi.org/10.1145/3661813.3661817
https://doi.org/10.1145/3661813.3661817
https://creativecommons.org/licenses/by/4.0/


EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Viso!o and Mo!ola

interactions. We make both paradigms operate in a location-aware
manner. We use the prototype running in a virtualized environ-
ment and real-world packet traces to emulate di"erent network
conditions and measure key performance metrics, as reported in
Sec. 4. We demonstrate, for example, that our design decreases the
average message latency by more than 50% in scenarios akin to
Fig. 1, while increasing throughput.

2 BACKGROUND AND RELATEDWORK
Existing e"orts tackle the problem of IoT location-aware communi-
cations separately for Req/Resp or Pub/Sub systems.

Several designs exist that extend the Pub/Sub paradigm with
location-aware functionality when using the content-based message
model [7]. Examples include systems to provide customized services,
mainly for advertisement, based on user location [3, 5, 8, 10, 13, 16].
In smart city applications, on the other hand, data $ows are usually
speci#ed based on data types. Pub/Sub systems using the topic-
based message model [7] provide e!cient network support for this,
with the MQTT protocol being the most representative example.
Several works extend MQTT with location-aware functionality.

MQTT-G [2] extends the original MQTT design by adding loca-
tion data between the message header and the payload. Unlike what
we do, this requires modifying the core functionality of the MQTT
broker, which must retain location information for subscribers, a
new message type, and new APIs that replace the original MQTT
interface. Backward compatibility is achieved by switching between
the two implementations based on a $ag in the message header.
Similarly, MQTT5 [11] requires new message types to manage lo-
cation information, transmitted in addition to the regular MQTT
messages, placing additional strain on the network.

In other works, GeoMQTT [9] presents an MQTT extension that
adds both spatial and time information. The design includes a new
indexing structure at broker side to store and retrieve client infor-
mation. Location information are embedded within the message
payload, which therefore requires parsing each and every single
message at the broker, adding processing overhead. LA-MQTT [14]
relies on an external software component to manage location in-
formation, leaving the original MQTT implementation unchanged.
The external component is deployed on a backend and coordinates
with the original MQTT broker by subscribing to dedicated control
topics that allows it to receive and dispatch messages with location
information. This solution adds a new single point of failure in
addition to the existing MQTT broker.

IoT communication systems based on Req/Resp interactions
rarely o"er location-aware functionality. Existing works focus on
frameworks to handle location information at the servers. For ex-
ample, LAISYC [1] presents a design using UDP to manage location-
based information for HTTP applications, mainly applicable to
real-time GPS-based mobile applications.

Router Consumer Source

/humidity /humidity

/humidity

/airquality

/airquality

/airquality

/airquality

Figure 2: Zenoh architecture.

.../.../dataType1/dataType2/.../locationKey/.../dataType3/...

Regular topic matching Regular 
topic matching

Location
matching

Figure 3: Topic with location key.

Zenoh [19] provides both Req/Resp and Pub/Sub interaction
paradigms using a topic-based approach. It supports fully decentral-
ized architectures, as exempli#ed in Fig. 2, enabling device intercon-
nections also over the public internet. Zenoh uses three di"erent
device con#gurations. Peers are devices running the Zenoh protocol
and capable of sending or receiving messages; they can dynamically
discover and connect with other peers as needed. Routers manage
data $ows across di"erent endpoints; they can dynamically adjust
routes to ensure reliable and e!cient message forwarding. Clients
are end devices that cannot route messages.

Zenoh has no built-in location-aware functionality. Because of
the uni#ed support to both interaction paradigms and modular
design, we use it as a basis for our work, as described next.

3 DESIGN
We set two primary goals when enabling location-aware function-
ality in Zenoh: i) to leave the routing core and message forwarding
unchanged, and ii) to ensure co-existence and maintain backward
compatibility with the original version of the protocol.

We achieve both goals by introducing location informationwithin
a message topic, formatted in a way that allows us to interject when
this information does appear, as intuitively shown in Fig. 3. Upon
inspecting a topic and recognizing location information, we dele-
gate matching of that part of the topic to an additional component
we develop, shown within the complete architecture in Fig. 4. This
e"ectively decouples the location matching process from the origi-
nal topic matching functionality. The latter applies unchanged to
the remaining part of the topic. The outcomes of the two matching
processes are taken together to determine overall matching.

Our design brings several bene#ts. Matching of location infor-
mation is orthogonal to the routing functionality and becomes an
additional input to decide message forwarding. This happens with-
out altering the existing routing core and message forwarding, as
matching of location information is embedded within the overall
topic matching. Changes to the original protocol implementation
are minimal, only requiring modi#cations to 6 code lines. This al-
lows us to bene#t from the optimizations and testing of the existing
protocol implementation. If location information does not appear
in a topic, the original topic matching applies, e"ectively ensuring
the co-existence of (non-)location-aware messages. Finally, making
an external component responsible for location matching provides
freedom in deciding how to encode this information. We describe

Zenoh core

Zenoh API

 Wrapper

Location library

E1 E2 ...

Matching
component

Location API

Figure 4: Architecture design.

14



Enabling Location-aware Operation
in Decentralized IoT Communications EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

next three example encodings that strike di"erent trade-o"s be-
tween expressivity and overhead.

We target large distributed systems, akin to the air quality moni-
toring example presented in the Introduction. As we explain next,
consumer selection at the routers based on both topic and location
generally decreases the network tra!c, which is advantageous also
in constrained and/or congested networks. However, applying our
design to other brokered architetures, like MQTT, would increase
the computational load on the broker, which still represents a single
point of failure, making our techniques less e"ective.

3.1 Location Matching Component
We call location key the speci#c topic level where location informa-
tion appears, if any, as shown in Fig. 3. Regardless of the encoding
of location information, the location key includes three parts: a
pre#x, the actual encoded location information, and an optional
$ag space to specify additional information. While parsing a topic
name, upon recognizing the pre#x, we extract and forward the
location key to the location matching component.

The location matching component exposes a single operation
that takes as input two location keys and returns a Boolean value
representing the possible match. From the prospective of the origi-
nal Zenoh implementation, the location matching component oper-
ates as a black box with a well-de#ned Boolean interface.

Upon receiving two location keys through its interface, the lo-
cation matching component #rst recognizes the speci#c encoding
technique employed among the supported ones; then it accordingly
decodes the location information. Matching of location information
is then performed based on the speci#c semantics, as dictated by
the encoding at hand, and the result is returned to Zenoh as part of
the complete topic matching process.

3.2 Encoding Location Information
We design three encoding techniques, each providing a di"erent
tradeo" between expressiveness and processing overhead.
JSON+Base64. We employ a JSON object, then encoded in Base64,
to describe location information. This o"ers the highest expressive-
ness among the encodings we experiment with. One can describe
complex shapes, including both user-de#ned shapes and ego-centric
de#nitions [15]. Information sources, such as publishers, are asso-
ciated to single points in space, whereas information consumers,
such as subscribers, are associated to areas of interest. A match
occurs if the point associated to the source falls within the area
associated to the consumer.

For example, an information consumer de#nes a circular shape
centered on itself as

{c: {x: 10.10, y: 20.54}, r: 10}

where c indicates the circular shape centered on the consumer
position (x,y), with radius r. This JSON object requires 44 bytes
for its Base64 representation. Overall, this encoding incurs higher
network and processing overhead compared to the others, primarily
due to its high expressiveness.
MGRS. The Military Grid Reference System (MGRS) is a geoco-
ordinate system used to specify locations on the Earth’s surface,
originated in military applications. It is derived from the Universal
Transverse Mercator (UTM) coordinate system [12] and features

10S GJ 0683244683

10S GJ 068446

Source

Consumer

{

{

{

{ {

{

06832  44683
068      446

Match!

Easting       Northing

Figure 5: MGRS match example.

an easy to parse, compact representation. The MGRS is arranged
as a grid with 100000-meter squares, speci#ed with Easting and
Northing values. It can represent areas from 6↓ ↔ 8↓ grid zone
polygons down to 1𝐿2 squares, progressing by orders of magni-
tude. The matching semantics is similar to JSON+Base64. However,
sources can only be associated with the smallest location MGRS
can represent, that is, a 1𝐿2 square area, rather than single points.

MGRS does not allow for the de#nition of intersections.Matching
is therefore as simple as recursively checking the containment of
one coordinate into another. Fig. 5 shows an example where we
represent consumers with 100𝐿2 precision. The match is positive
because the two coordinates share both the grid zone (10S), the
100000-meter square (GJ), and Easting and Northing values. As for
the latter, the match occurs because the two coordinates share the
values of their shortest representation, indicating containment of
the source coordinates within the consumer coordinate.

MGRS evidently provides lower expressiveness compared to
JSON+Base64, because of the rigid representation of location in-
formation. This comes in exchange of a much more compact en-
coding and a simpli#ed matching process, which come handy in
constrained networks, as we demonstrate in Sec. 4.
Bloom !lters. A Bloom #lter is a probabilistic data structure to
e!ciently check the membership of an element in a set [18]. To use
Bloom #lters to encode location information, we #rst partition the
space into a grid of given granularity. We incorporate each element
of the grid that falls within the consumer’s area of interest into a
#lter and insert the resulting bit array in the location key. At the
source, we replicate the same process by only incorporating the
grid element corresponding to its location. Matching is performed
in a bitwise manner at the routers, as in Fig. 6. The 1 bits in the
source #lter represent the outcome of the hash functions computed
for the single grid element of the source. In the consumer’s #lter,
the 1 bits represent the grid elements covering the area of interest.

By design, Bloom #lters may allow false positives to occur but
never produce false negatives. This makes them appropriate to en-
code location information in a producer-consumer communication
system. Because of the lack of false negatives, we ensure that mes-
sages are always delivered to the target consumers; in the worst
case, because of false positives, a consumer with a non-matching
area of interest may however receive spurious messages.

Consumer

Filter

1 0 1   0 0   1 0   0 0   0

0 1 2 3 4 5 6 7 8 9
Source

Filter

Source

Filter

X

Match!

No Match!

1 0 1   1 0   1 0   0 1   0

0 1 2 3 4 5 6 7 8 9

1 0 0   0 1   0 0   0 0   1

0 1 2 3 4 5 6 7 8 9

X

Figure 6: Bloom !lters match example.

15



EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Viso!o and Mo!ola

3.3 Developer APIs
Our design is available to programmers through an additional API
exposed by a custom wrapper, as shown in Fig. 4.

Key to our design is for a device to provide its own location.
Programmers decide how often to update this information. We of-
fer an operation to indicate the current device position, together
with a corresponding lifetime [17]. If set to in#nite, the device
is considered stationary. Otherwise, the behavior is di"erent at
sources or consumers. Sources check a change in device location
whenever a message is generated, ensuring that the location infor-
mation attached to the message is most recent. Consumers check
for changes in the device location upon expiration, according to
the programmer-provided lifetime. If the location does change, any
current subscription that uses the device location, for example, the
ego-centric example for JSON+Base64, is updated accordingly.

All other operations in the additional API use the same oper-
ation names of the original APIs and extend them with location
parameters. The wrapper consists of a new class that replicates
the original Zenoh Session class, where we extend the parameter
set of each operation requiring a topic with the needed location
information. The wrapper generates the location key and calls the
equivalent Zenoh’s operation with the extended topic structure.

4 EVALUATION
Sec. 4.1 introduces our experimental setup, the metrics we consider,
and the baselines we compare with.We discuss the results we obtain
in Sec. 4.2, leading to three key conclusions:

(1) in a setting with logical partitions, our design decreases
message latency up to a 50% improvement compared to the
baselines, while increasing throughput;

(2) in a setting with no logical partitions, our design still reduces
the load on intermediate routers, yielding a 55% (20%) lower
latency compared to the T!"#$ (P%&’!%() baseline;

(3) MGRS encoding reduces message latency up to 40% of the
other two encoding techniques, due to a more compact rep-
resentation and more e!cient matching.

4.1 Settings
The performance of a decentralized IoT communication protocol
depends on multiple factors, including network links and device
processing. Using a network simulator would only capture a few
of these, for example, lacking a model of local processing times,
which is however crucial to test di"erent encoding schemes.
Setup.We opt to create a virtualized environment to realistically
measure performance. We create a variable number of virtual ma-
chines (VM) in a Proxmox cluster, each running Ubuntu Server
22.04.1 and equipped with 4 cores plus 4GiB of RAM. The number
of cores and their performance match an average IoT edge device,
such as a RaspberryPI. Each VM acts as a Zenoh client or router.

We meticulously select paradigmatic network topologies to un-
derstand the speci#c trade-o"s at stake. To realistically model net-
work conditions and ensure repeatability across experiments, each
Zenoh client runs MahiMahi v0.98, a toolset for emulating dynamic
links, such as the one in cellular networks. We use the MahiMahi
TMobile-LTE-driving.down trace #le emulating a 100Mbps LTE
connection. To place an additional stress factor, each Zenoh router

uses Wondersharper v1.4.1 to limit the bandwidth available along
the router backbones to only 5Mbps, representing a case where
Zenoh must co-exist with signi#cant network tra!c.

We carefully choose system con#gurations that may emulate
the behavior of wider networks. For instance, we replace a higher
number of sources with fewer sources with higher message rates,
which is e"ectively immaterial as long as the load on the links
is the same. To ensure #ne-grained control of the experiments
and equal conditions against the baselines, we con#gure Zenoh
clients not to simultaneously act as routers. We also #x network
links forming the topology a priori, essentially skipping Zenoh’s
discovery phase, which may lead to di"erent network topologies
being used in di"erent experiments. Bloom #lters are generated
with a 25% probability of false positives. We discuss this speci#c
parameter choice at end of the next section.

This setup does provide the greatest realism, as it is closest to
a real deployment. We also acknowledge that it comes at the cost
of making experiments more time consuming and less scalable:
the experiments run in real time and available hardware resources
allow us to virtualize only a limited number of nodes.
Metrics. We measure message throughput and system latency,
which are staple networking metrics and directly impact the end-
user’s perceived quality of service. In our design, they also help
identify how di"erent location encoding techniques in$uence the
number of transmitted messages and their transmission times.

Clocks across VMs are synchronized as they are all virtualized
over the same Proxmox physical node, and hence virtual their clocks
are all attached to the same physical clock. We measure message
latency as 𝑀 = 𝑁𝐿 ↗ 𝑁𝑀 , where 𝑁𝑀 is when the message is sent and
𝑁𝐿 is when the message is received. We measure throughput as the
number of messages matching a consumer’s interest are received
within a given time frame ω𝑁 . We run each experiment 12 times for
a duration of 3 minutes each.
Baselines. We compare our design against two baselines, called
T!"#$ and P%&’!%(, and representative of many of the existing
solutions discussed in Sec. 2. We implement both baselines on top
of the original Zenoh protocol v0.7.2-rc.

T!"#$ incorporates location details right into the #rst two levels
of the topic structure. For example, it uses a topic

<latitude>/<longitude>/airquality

to generate air quality data from a sensor located at (<latitude>;
<longitude>). Message consumers use a wildcard in the #rst two
topic levels, such as

*/*/airquality

and therefore receive every message carrying air quality data. Upon
receiving the message, the consumer extracts the coordinates from
the #rst two topic levels of the message and determines whether
to continue processing the message or to drop it, depending on
whether it falls within the geographical area of interest.

P%&’!%( embeds location information within the message pay-
load. The topic only includes information on the data type, as in
/airquality, and is used the same at sources and consumers. Upon
receiving a message, the same process as in the T!"#$ baseline ap-
plies, with location data extracted from the payload.

16



Enabling Location-aware Operation
in Decentralized IoT Communications EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

14 2

34

5

C10

S13

C9

C8

C7

C6

C11

15

16

1

17

S12

Zone 01 Zone 02

Router Consumer Source

Figure 7: Logical partition network topology.

(a) Logical partition: latency.

(b) Logical partition: throughput.

Figure 8: Logical partition: results.

4.2 Results
We consider di"erent scenarios of interest.
Logical partitions. We partition the network into two logical
zones, as depicted in Fig. 7, modeling the air quality scenario of the
Introduction. Each zone includes one source and three consumers.
Consumers in green match messages generated in the area of S13.
This is the area of interest for the application, that is, the colored
rectangle in Fig. 1. S13 injects 20 msg/sec. Consumers in red match
messages generated in the area of S12. S12 generates 3200 msg/sec,
mimicking the network tra!c generated in the rest of the city.

Fig. 8a shows the average latency at each consumer. Without
location-aware operation, messages generated at S13 or S12 are
routed all the way to the opposite network partition only to be
discarded at the consumer. Messages generated by S12, in particular,
greatly impact the baselines’ latency as they end up where they
should not be routed at all. In contrast, without altering Zenoh’s
routing core, our design prevents the unnecessary routing, reducing
the average latency of about 50% compared to the baselines.

Fig. 8b shows the average throughput we measure. The baselines
show lower throughput compared to our design, regardless of lo-
cation encoding. This arises as the consumers in the baselines can
only process a smaller number of messages from S13 within the

14 2 3

4 5

S13

15

16

1

C8

C11
C7 C9

C6

C10

Router Consumer Source

Figure 9: Mixed network topology.

same interval because, with the same processing resources, they
must also handle (and discard) messages from S12 simultaneously.
Note how the plot zooms in along the y-axis for better clarity.

This phenomenon is also apparent when looking at the standard
deviation computed across all latency values for each consumer.
The higher number of messages that consumers must handle when
using either baseline yields longer processing queues, producing
a ↘53% higher variability in measured message latency.
Mixed network layouts.We evaluate the performance di"erences
between our design and the baselines in the absence of logical
partitioning.We consider the topology in Fig. 9: the three consumers
shown in orange match both data types and location of the single
source. The other three consumersmatch the data type but belong to
a di"erent geographical zone, where no source generates matching
messages. The source sends 3200 msg/sec to stress the system.

Fig. 10a depicts message latency at the three matching sub-
scribers. Our design provides better performance than the baselines
also with no logical partitioning. The latter pay a penalty due to the
unnecessary tra!c generated to reach consumers where messages
are eventually dropped. The Payload baseline shows a good perfor-
mance like the location-aware techniques. The 2-level shorter topic
require less time to process, compensating the time needed to #lter
messages upon reception. This solution, however, does not scale.
With larger networks, the number of unnecessary messages in-
creases, reapproaching the results of Fig. 8. Unlike Fig. 8b, however,
the throughput does not su"er as much in the baselines, as shown
in Fig. 10b. There is indeed a “pile up” e"ect of sort at the queues
of intermediate routers, yet the additional latency this generates is
roughly the same for all messages, eventually leading to a similar
number of messages received within the same time window.

We use the same network layout to evaluate the latency dif-
ference among location encoding techniques, shown in Fig. 10c,
swapping the role of the two groups of consumers. MGRS encoding
is the best performing, owing to its concise representation that leads
to a reduced message size and is amenable to an e!cient recursive
matching process that approaches 𝑂 (𝑃), where 𝑃 is a constant. As
expected, the worst-performing technique is the JSON+Base64 one,
which is verbose and complex to parse, yet provides the highest
expressiveness. The performance of Bloom #lters depends on the
constituent parameters, such as domain de#nition and desired prob-
ability of false positives. Since we con#gure our experiments to
obtain an encoding length comparable to the Base64 one, the Bloom
#lter performance shows how matching using bitwise operations
abates processing time, reducing latency.
Bloom!lters: probability of false positives. The 25% probability
of false positives we use is not a random value. We rather determine
this parameter to ensure that no false positives occur in our speci#c
setting, based on a dedicated experiment.

17



EnvSys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Viso!o and Mo!ola

(a) Mixed network layout: latency. (b) Mixed network layout: throughput.

9 10

(c) Latency comparison for location encoding.

Figure 10: Mixed network: results.

Subscriber ID Expectation
S6 6
S7 6
S8 4
S9 4
S10 1
S11 3

Table 1: Expected number of messages.

False positive percentage Result
1% No false positive
10% No false positive
20% No false positive
25% No false positive
30% 1 false positive
40% 4 false positive
Table 2: False positive experimental outcome.

We de#ne a 5 ↔ 5 grid domain with one message source and
six consumers covering a portion of the domain. The source sends
one message for each domain element. Each consumer records
every message it receives, including information of the cell the
message originates from. Tab. 1 reports the number of messages
each consumer expects to receive, depending on how each of them
matches a given slice of the domain. We regenerate the Bloom
#lters with increasing probability of false positives, starting from
1%. Tab. 2 shows that we record the #rst false positive with a 30%
false positive probability. The 25% setting we use is the greatest
setting that produces no false positives.

5 CONCLUSION
We presented an e!cient design to enable location-aware opera-
tion on top of the Zenoh protocol, supporting both Req/Resp and
Pub/Sub interaction paradigms. Our design delegates handling of
location information to an external component that is completely
decoupled from the rest of Zenoh’s implementation, retains the
original functioning of Zenoh’s routing core and thus bene#ting
from existing optimizations and testing. This also allows us to sep-
arate out the encoding of location information: we indeed present
three techniques to encode location information, each of them rep-
resenting a trade-o" between performance and expressiveness. Our
evaluation uses a virtualized environment and real-world message
traces. We demonstrate, for example, that our design reduces the

average message latency by more than 50% in a network with a
logical partitioning, while increasing throughput compared to the
two baselines we consider. The MGRS location encoding technique,
moreover, provides 40% lower latency than the other two encoding
techniques, at the cost of reduced expressivity.

The implementation is publicly available [20].
Acknowledgments. This work was partly supported by the Na-
tional Recovery and Resilience Plan (NRRP), Mission 4 Component
2 Investment 1.3 - Call for tender No. 1561 of 11.10.2022 of Minis-
tero dell’Università e della Ricerca (MUR); funded by the European
Union - NextGenerationEU.

REFERENCES
[1] S. J. Barbeau et al. 2011. A Location-aware Framework for Intelligent Real-time

Mobile Applications. IEEE Pervasive Computing (2011).
[2] R. Bryce et al. 2018. MQTT-G: A Publish/Subscribe Protocol with Geolocation.

In International Conference on Telecommunications and Signal Processing (TSP).
[3] X. Chen et al. 2003. An E!cient Spatial Publish/Subscribe System for Intelligent

Location-Based Services. (2003).
[4] Citcom.AI Consortium. 2024. Citcom.AI. https://citcom.ai/
[5] P. Costa et al. 2007. Recon#gurable Component-based Middleware for Networked

Embedded Systems. International Journal ofWireless Information Networks (2007).
[6] R. Dameri et al. 2013. Searching for Smart City De#nition: a Comprehensive

Proposal. International Journal of Computers & Technology (2013).
[7] P.Th. Eugster et al. 2003. The Many Faces of Publish/Subscribe. ACM Comput.

Surv. (2003).
[8] P.Th. Eugster et al. 2005. Location-based Publish/Subscribe. In Fourth IEEE

International Symposium on Network Computing and Applications.
[9] S. Herle and J. Blankenbach. 2016. GeoPipes Using GeoMQTT. In Geospatial Data

in a Changing World.
[10] H. Hu et al. 2015. A Location-aware Publish/Subscribe Framework for Parame-

terized Spatio-textual Subscriptions. In 2015 IEEE 31st International Conference
on Data Engineering.

[11] F. Ihirwe et al. 2021. Towards an MQTT5 Geo-location Extension for Location-
aware Applications. In International Conference on Telecommunications and Signal
Processing (TSP).

[12] R.B. Langley. 1998. The UTM Grid System. GPS world (1998).
[13] G. Li et al. 2013. Location-aware Publish/Subscribe. In Proceedings of the 19th

ACM SIGKDD international conference on Knowledge discovery and data mining.
[14] F. Montori et al. 2022. LA-MQTT : Location-aware Publish-subscribe Commu-

nications for the Internet of Things. ACM Transactions on Internet of Things
(2022).

[15] L. Mottola et al. 2007. Enabling Scope-based Interactions in Sensor Network
Macroprogramming. In International Conference on Mobile Adhoc and Sensor
Systems (MASS).

[16] L. Mottola et al. 2008. A Self-repairing Tree Topology Enabling Content-based
Routing in Mobile Ad Hoc Networks. IEEE Transactions on Mobile Computing
(2008).

[17] L. Mottola and G. P. Picco. 2007. Programming wireless sensor networks with
logical neighborhoods: a road tunnel use case. In SENSYS.

[18] S. Tarkoma et al. 2011. Theory and Practice of Bloom Filters for Distributed
Systems. IEEE Communications Surveys & Tutorials (2011).

[19] Zettascale Technology. 2024. Zenoh. https://zenoh.io/
[20] M. Visotto and L. Mottola. 2024. Location-aware version of Zenoh Source Code.

https://lazenoh.neslab.it

18

https://citcom.ai/
https://zenoh.io/
https://lazenoh.neslab.it

