
Enabling Location-aware Operation
in Decentralized IoT
Communications

Tesi di Laurea Magistrale in
Computer Science and Engineering -
Ingegneria Informatica

Author: Matteo Visotto

Student ID: 976477
Advisor: Prof. Luca Mottola
Academic Year: 2022-23





i

Abstract
At the heart of an IoT distributed infrastructure lie communication protocols. Litera-
ture presents various communication models and message patterns tailored to di!erent
use cases. Among these, the Publish/Subscribe (Pub/Sub) message model stands out
as widely utilized, with several publicly available protocols. Zenoh, a recently emerged
protocol, adopts a Pub/Sub topic-based paradigm unifying also the Request/Response
model. It employs a fully decentralized architecture, ensuring fault tolerance and elim-
inating the necessity for a central broker. It also supports geo-distributed storage and
query capabilities, harmonizing data in motion, in use, and at rest, but it currently lacks
location-awareness capabilities. Zenoh is not able to perform subscriptions based on both
the data and the location where these data originate.
To address the challenge of associating sensed data with their respective sensing loca-
tions for both stationary and moving sources, ensuring independence between the two
aspects, we design and implement a location-aware variant of Zenoh. This involves intro-
ducing a unique key within the topic structure for conveying geographic encoded data.
We introduce a location matching component decoupling the matching process and man-
aging location data externally. This lets us just inject location-based matching results
in Zenoh’s core and we do not need to make changes in the protocol logic nor in the
routing process, guaranteeing performance and functionality of the original version. This
solution allows us to pilot message routing managing complex geographical shapes and
coordinates, defining location matching rules independently of the rest of the topic. Our
approach enables the implementation of three encoding techniques, each of them with a
distinct tradeo! between performance and expressiveness in describing geographical data.
Our location-aware version of Zenoh demonstrates to create a logical partition of the
network according to geographical zones, filtering unnecessary messages, enhancing per-
formance, and reducing latency by more than 50%. In addition, we provide an encoding
technique that performs 40% better than the others, making it suitable for congested,
slow, and resource-constrained networks.

Keywords: Zenoh, IoT, Protocol, Topic, Publish/Subscribe, Location, Location-awareness





iii

Abstract in lingua italiana
Al centro di un’infrastruttura IoT si trovano i protocolli di comunicazione. Tra i vari
proposti in letteratura, il modello Publish/Subscribe (Pub/Sub) è il più di!uso, con di-
verse implementazioni documentate. Zenoh, un protocollo recentemente emerso, adotta
il paradigma Pub/Sub implementando anche il modello Request/Response, supportando
architetture decentralizzate, assicurando la tolleranza agli errori e eliminando la neces-
sità di un broker o server. Inoltre, o!re il supporto a storage distribuiti e la capacità di
eseguire query, integrando la produzione, la memorizzazione, l’utilizzo e la richiesta dei
dati, ma attualmente non implementa meccanismi location-aware, ovvero non è in grado
di e!ettuare sottoscrizioni basate sia sui dati che sulla posizione di origine degli stessi.
Per a!rontare il problema di associare i dati rilevati da sensori alle rispettive posizioni di
rilevamento sia per le fonti stazionarie che in movimento, garantendo l’indipendenza tra
i due aspetti, abbiamo progettato e implementato una variante location-aware di Zenoh.
Abbiamo introdotto una chiave all’interno del topic contenente i dati geografici codifi-
cati. Abbiamo introdotto un componente di match per i dati geografici che disaccoppia il
processo di matching gestendoli esternamente. Ciò ci consente di iniettare solo i risultati
del match geografico nel core di Zenoh senza apportare modifiche alla logica del proto-
collo né al processo di routing, garantendo le prestazioni e le funzionalità della versione
originale. Questa soluzione ci permette di manipolare il routing dei messaggi gestendo
coordinate geografiche e forme geografiche complesse, definendo regole di matching della
posizione indipendentemente dal resto del topic. Il nostro approccio ci ha consentito
l’implementazione di tre tecniche di codifica, ciascuna un compromesso tra prestazioni ed
espressività nella descrizione dei dati geografici.
La soluzione è e"cace nel suddividere logicamente la rete in base alle zone geografiche,
filtrando i messaggi, migliorando le prestazioni e riducendo la latenza di oltre il 50%.
Inoltre, forniamo una tecnica di codifica che, rispetto alle altre, dimostra prestazioni su-
periori del 40%, rendendola adatta per reti congestionate, lente e con risorse limitate.

Parole chiave: Zenoh, IoT, Protocollo, Topic, Publish/Subscribe, Posizione, Location-
awareness







vii

Contents

Abstract i

Abstract in lingua italiana iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1 Problem and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art 9
2.1 Publish/Subscribe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Subscription Models . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Request/Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Hybrid Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Zenoh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Location Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Problem Statement And Design Space 27
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Solution Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Location as a Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Location in the Payload . . . . . . . . . . . . . . . . . . . . . . . . 31



viii | Contents

3.3.3 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Encoding Spatial Information . . . . . . . . . . . . . . . . . . . . . 32

3.4 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Design 37
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Internals Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Zenoh Location-aware API . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Embedding Location 47
5.1 Base64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 MGRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Bloom Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Implementation Highlights 59
6.1 Zenoh Internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Location Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.1 Base64 Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2.2 MGRS Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2.3 Bloom Filter Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 API Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 REST Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Experimental Evaluation 71
7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.1.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.1.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Results Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Zoning Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3.1 Network Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4 Near-field Location-aware Subscribers . . . . . . . . . . . . . . . . . . . . . 80
7.4.1 Network Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5 Far-field Location-aware Subscribers . . . . . . . . . . . . . . . . . . . . . 85
7.5.1 Network Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



7.6 Computing Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.7 Transport Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.8 Bloom Filter Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.8.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 Conclusion 101

Bibliography 105

List of Figures 109

List of Tables 111





1

1| Introduction

The proliferation of Internet of Things (IoT) systems revolutionized the way we perceive
and interact with our surroundings. At the heart of this transformation lies data [10].
IoT systems quietly gather, transmit, and analyze an astonishing volume of data [17].
Given the constraints on computational capabilities in IoT devices, their primary func-
tions involve sensing and transmitting data. This data is subsequently processed in more
powerful nodes. Consequently, a critical aspect lies in the method of data transmission,
especially the communication protocols employed.

The Publish/Subscribe (Pub/Sub) message pattern is a widely adopted paradigm to build
flexible and scalable communication systems in a distributed environment [2]. This model
is suitable for data dissemination and event-driven communication. It o!ers a decoupled
and asynchronous communication pattern, where publishers and subscribers operate with-
out being aware of each other. Due to the flexibility this model provides, various publicly
or commercially available systems implement the Pub/Sub paradigm. Each implemen-
tation di!ers in elements such as supported network topology, and subscription model.
Among available protocols, some examples are MQTT, MQTT-S, and AMQP, which are
commonly employed in IoT for sensor data updates, alert notification, dynamic configura-
tion, and applications where sensors produce data without the need to receive commands
frequently.
On the other hand, the Request/Response (Req/Resp) model is also employed in IoT.
This model is useful when direct communication between two nodes is necessary, enabling
control and coordination of individual devices, as well as specific data retrieval. This
model also provides synchronous communication, ensuring that requests are accompanied
by timely responses. So, Req/Resp can be applied in scenarios where devices need to
listen for incoming requests, such as data retrieval from a sensor and triggering a specific
action on a device, like switching on a light bulb. Among di!erent Req/Resp protocols
some examples of protocols applied to IoT are HTTP and CoAP [15][4].

An emerging protocol called Zenoh unifies Pub/Sub and Req/Resp models. Zenoh em-
ploys a Pub/Sub-based paradigm and integrates geo-distributed storage, query, and com-



2 1| Introduction

putation capabilities with the goal of harmonizing data in motion, in use, and at rest.
Its fully decentralized architecture ensures fault tolerance, eliminating the necessity for a
central broker or server working both using multiple routers or peer-to-peer. All these pro-
tocols o!er models and capabilities to meet IoT system requirements but Zenoh seems to
be a promising protocol unifying Pub/Sub and Req/Resp models in one unique protocol.

1.1. Problem and Contribution

With the proliferation of IoT systems in our lives and the growth of large-scale systems,
the amount of data we produce increases notably. This huge quantity of data must be
transmitted and stored. In addition, particularly in large-scale systems, the importance of
the data may depend not only on the data but also on the location where it is generated.
Let us consider a scenario where multiple cities deploy air quality sensors across various
areas. The relevance of both live and stored data is intrinsically tied to the sensor’s
position within the data value. Hence, it becomes crucial to directly associate data with its
location. On the other hand, individuals interested in the data should have the capability
to receive real-time information or query stored data based on both the data type and
the relevant location. While the nature of the data, such as air quality, remains the same
across multiple sensing locations, the area of interest may vary. For instance, one might
desire to consult data from the entire city or from a specific zone. For this reason, there
is a need to obtain sensor readings using both the data type and the location as two
orthogonal and independent parameters.
Among the protocols under consideration, none provide this capability; in other words,
they are not location-aware. Being location-aware implies that the distributed system is
aware, or can become aware upon request, of the position of a device or, in our context,
the location to which a message corresponds. Our main goal is to associate a message
with both its generated location and the entities that have an interest in it. Practically,
our goal is to link sensed data to its respective sensing location for both stationary and
moving sources, ensuring that these two facets remain independent of each other.

To incorporate location-aware features, we opt not to build a protocol from scratch, an
operation that may result in something useless or not properly testable. We opt for Zenoh
since it looks like the most promising protocol thanks to the support of a distributed
architecture. It also accommodates both the Pub/Sub model for managing real-time data
from sensors and the Req/Resp model, which is suitable for implementing distributed
storage, historical data retrieval, and on-demand data access. Zenoh is a topic-based
protocol, wherein a message is described using a topic. This allows us to articulate



1| Introduction 3

our data using multiple levels for enhanced granularity. Zenoh, in addition, o!ers the
possibility to introduce custom behaviors.

To design our location-aware version of Zenoh we take into account three di!erent aspects:

• Compatibility with the protocol’s native version: Ensuring seamless operation for
current applications employing Zenoh, even in the modified version. Also, ensuring
the ability to concurrently utilize both the native and location-aware versions of the
protocol within the same deployed network.

• User-friendliness: Prioritizing ease of use for developers, minimizing the intricacies
associated with location management.

• Mobility support: Acknowledging the dynamic nature of IoT devices, particularly
those changing locations, such as sensors on vehicles or wearable devices on individ-
uals in motion.

The topic-based nature of Zenoh, suggests us to use the topic for spatial information,
keeping the payload for the data. However, specifying explicitly the location of a message
using multiple topic levels seemed immediately like a suboptimal solution, lacking freedom
both in describing an extended space and in the fact that geographic location would be
more tied to the type of data rather than the data itself.
Instead, we chose to dedicate a single topic level to geographic information, placing it
within a key that Zenoh can then identify and manage separately. In Figure 1.1 we report
the high level architecture we design. This approach allows us to add no more than
6 lines of code to the core of the protocol, by essentially defining only the key prefix,
and relocating its entire management to a new component, completely detaching from
the regular topic management process. Only at the end of the match the result, whether
positive or negative, is communicated to Zenoh’s core for comparison with the information
from the normal topic. Furthermore, this solution does not require changes to Zenoh’s

Native
ZenohNative

Zenoh
API

Location-aware
API wrapper

lib location-zenoh

Encoding 1 Encoding 2 ...

Figure 1.1: High level architecture.



4 1| Introduction

routing component, preserving its functionality and e"ciency. In addition, by decoupling
the matching process, we ensure complete compatibility with all the devices using the
native version of the protocol, leaving unchanged also the topic matching interface. This
solution enables us to alter the message routing process from publishers to subscribers,
going beyond simple string equality in topics, allowing new and more complex criteria
just injecting information within a unique key.

To concretely implement this extension, we worked on two fronts: the APIs intended for
developers and the location match module on the router side. Regarding the APIs, we opt
to use a wrapper to keep the native APIs unchanged, employing the same function signa-
tures with the addition of necessary parameters. In the wrapper we construct, developers
define the topic as in the native version without worrying about including geographic
data. The introduction of new functions, in addition to existing ones, allows reading the
position, defining an extended space, and specifying the validity of the current position.
Transparently to the developer, the wrapper takes care of generating the key containing
geographic data, appending it to the topic, and performing the desired operation, whether
it is a publish or a subscribe. This approach allows us to treat positional data encoders
as plugins within the location-aware system, providing the flexibility to define various
encoding techniques with distinct properties and levels of expressiveness.

In our extension, we o!er three distinct encoding techniques, each varying in its level of
expressiveness and required processing overhead:

• Base64: The default method involves the Base64-encoded version of a JSON object.
While this results in a longer key, it enables the detailed description of complex areas.

• Military Grid Reference System (MGRS): The MGRS is a concise, simple,
and lightweight encoding method. It facilitates the description of squares within a
grid system, ranging in precision from 6-degree longitudinal bands to 1m2. It results
in a shorter and more manageable key.

• Bloom Filters: A Bloom Filter is a binary data structure that allows querying the
membership of an element in a set. As it relies on a bit array, the matching process
is lightweight due to bitwise operation. As an encoding technique, it enables the
description of relatively complex areas but introduces a probability of false positives.

Subsequently, we enter an evaluation phase to assess the e"ciency of our solution. Latency
and throughput are the metrics we consider for the evaluation since they measure the
performance of the system respectively in terms of time required for a message to reach
the destination and the number of messages the system can handle in a second: two



1| Introduction 5

important aspects in a distributed system.
We conduct identical tests using the three location-aware encoding techniques we provide
and compare the results with baselines in which messages are routed considering only the
normal topic. In baselines’ subscribers, we discard messages which do not meet location
criteria upon receipt.
We employ three network topologies. Initially, we establish a network with two logically
separate but interconnected geographical zones to assess the e"ciency of the location-
aware mechanism. In this topology, all three location-aware techniques outperform the
baselines in both latency and throughput. This demonstrates that in a logically split
network, the protocol performs significantly better by preventing out-of-range messages
from being routed where unnecessary, thus avoiding resource waste. Using location-aware
encoding techniques results in a mean latency reduction of more than 50%.

In the other two topologies, we eliminate the distinct zones, creating a mixed network to
examine the performance of the encoding techniques and understand the limitations. In
both topologies, we conduct tests under congested network conditions by reducing link
capacity and generating a high volume of tra"c. We do that to stress the system, to
highlight the limits and the di!erences among techniques. MGRS demonstrates supe-
rior performance attributed to its concise representation and straightforward matching
process, outperforming Base64 and Bloom Filters by around 40% in latency.

Despite being beyond the intended scope of the location-aware implementation, we also
conducted tests on location-aware techniques to address all subscribers in a small network
where there is no distinction in location. As expected, the introduced overhead of per-
forming a double match for both topic and location leads to a latency increase, reaching
up to 70% compared to the baselines.

In summary, location-aware techniques prove highly e!ective in scenarios with well-defined
geographical zones, decreasing latency of more than 50%. However, in mixed, non-logically
split networks with a small number of devices, their e!ectiveness requires a comprehen-
sive study that considers network structure, performance, and the desired objectives.
Regardless of the scenario, MGRS exhibits better performance compared to other en-
coding techniques, and even in a suboptimal scenario for a location-aware application, it
proves to be quite e"cient.

1.2. Thesis Structure

This thesis is structured in eight chapters. To begin, we present an overview of current
communication protocols applicable to the IoT domain. Subsequently, we delineate the



6 1| Introduction

problem and propose some solutions, o!ering a rationale for their viability or drawbacks,
concluding the section by revealing our chosen solution, elucidating the primary reasons
behind this decision, and giving an illustrative example. Following this, we outline the
high-level design of our solution, and we discuss some key decisions we make during the
implementation phase. Then, we present the setup, metrics, and outcomes of our con-
ducted experimental evaluation.

In the following, we provide a summary of the chapters of our thesis:

• In Chapter 2 we analyze and compare various communication models and their
associated protocols to determine which ones best fulfill the requirements of IoT
systems. After evaluating two communication models and six di!erent protocols,
Zenoh emerges as the optimal choice for our objectives. Its support for multiple
network architectures and both communication models makes it well-suited for a
broad range of applications.

• In Chapter 3 we delve into the issue of linking sensed data to its respective location
for both stationary and moving sources, keeping the two aspects separate from each
other. We present various potential solutions and explore the information encoding
in a single topic level, which represents our solution due to its integration and
extendibility.

• In Chapter 4 we present the high-level design of our solution, along with examples
of the final APIs. Crafted for developer-friendly usability, our wrapper APIs en-
capsulate the native ones, preserving identical function signatures while seamlessly
incorporating new functions and parameters for handling location information.

• In Chapter 5 we introduce the encoding methods for location data. For each
method, we outline how we handle the information and execute the matching of the
location key data. We also explain our application of Bloom Filter as an encoding
technique, outlining the creation of the filter on the client side and the execution of
element queries on the router side.

• In Chapter 6 we delve into the most crucial decisions made in the implementa-
tion of Zenoh’s location-aware feature, emphasizing the handling of diverse location
keys derived from the encoding techniques. We delve into the matching process
employed by routers to separate location data from the topic and explore how the
final matching results are consolidated.

• In Chapter 7 we detail the setup of the evaluation, and the rationale behind the



1| Introduction 7

chosen network topologies. We discuss the results obtained for each topology and
provide a comparison of the encoding techniques individually. Additionally, we com-
pare the results obtained when reducing computational capacity and changing the
transport protocol. Finally, we dedicate a section to discussing the false positive
probability of Bloom Filters, explaining the rationale behind the value used during
the experiments. The results demonstrate our implementation actually performs a
logical split of the network into geographic zones, enhancing system performance
through message filtering in routing. Additionally, they indicate that adopting
location-awareness in a small, non-location-based network may not be advisable.
However, in a slow, resource-constrained, and congested network, employing a loca-
tion encoding technique can still be beneficial.

• In Chapter 8 we elaborate on conclusions we derived from our thesis and some
possible future work.





9

2| State of the Art

The purpose of this chapter is to provide the reader with some basic concepts about
technologies and protocols that serve as a background for future reasoning in this thesis.
We describe in detail the publish and subscribe paradigm, existing protocols, and their
application in di!erent contexts, comparing them with Req/Resp ones. Subsequently, we
focus on a new emerging protocol called Zenoh by ZettaScale [26]. Finally, we focus on the
location-awareness concept in routing and its application in Publish/Subscribe systems.

2.1. Publish/Subscribe

The Pub/Sub message pattern is a widely adopted paradigm to build flexible and scalable
communication systems in a distributed environment [2]. In a Pub/Sub system, generally
represented as in Figure 2.1, participants communicate with each other by exchanging
messages, or events. A participant can be a sender, which publishes a message without
the necessity to know who is the receiver thanks to an abstract group it publishes to. On
the opposite, a subscriber represents an entity that expresses an interest in one or more
categories of events without the knowledge of which publishers, if any, there are.

2.1.1. Subscription Models

Given the widespread usage of the Pub/Sub message pattern, there are various subscrip-
tion models in literature to best fit possible use cases. There are four distinct types of
subscription models based on the level of expressiveness they o!er:

• Channel based: Publishers publish messages into channels using a channel ID.
When a publish occurs, the message is placed in a FIFO queue at the broker side that
represents the channel. Subsequently, the message is broadcast to all the subscribers
of the queue [18].

• Topic based: It represents an improvement of the channel based model introduc-
ing a logical channel based on the topic name. It connects the publisher with all



10 2| State of the Art

publish, {payload}

pub
lish

, {p
ayl

oad
}

publish, {payload}

sub
scr

ibe

subscribe

Publisher Broker

Subscriber

Subscriber

Figure 2.1: Pub/Sub message pattern.

the subscribers that are interested in a particular topic leaving the message content
hidden to the broker. In a topic-based model a hierarchical approach is used to pro-
vide event classification and the definition of subtopics, for example, A/B represents
an event belonging to a topic A and subtopic B. In the same way A can have multiple
subtopics: B and C, obtaining a tree structure where A is the root [18][2].
In the literature, subject-based models represent a synonym of topic-based ones [2].

• Content based: This approach o!ers a di!erent perspective, aiming to enhance the
expressiveness of subscriptions. In the content-based model, subscribers and brokers
have knowledge of the message content, enabling the application of more robust
filters [18]. These filters act as "conditions" on the content, allowing developers to
create complex predicates based on message fields [2]. However, this model requires
a tradeo! between filter performance, in terms of delay and resource consumption,
and the level of expressiveness o!ered by the filters themselves.

• Type based: Eugester, in his paper, presents the type-based approach [7], which
relies on data structures. In other words, a subscriber only receives a published
message if the structure of the payload aligns with the structure of the payload
provided at subscription time [18]. He creates this model to bring Pub/Sub much
closer to code structure and expressiveness and to model messages with the language
itself. On the other hand, this model creates di"culties in portability since it is not
enough to translate the API into a di!erent language but also the message model.

In practice, we focus on topic-based and content-based subscription models, as other
models can be easily mapped or represented by these two.



2| State of the Art 11

Broker

Pub SubSub

(a) Brokered.

Sub

Sub

Sub

Sub

Pub

Pub

Pub

Pub

(b) Peer-to-peer.

Broker

Sub Pub

BrokerBroker

SubSub Sub SubPub Pub

(c) Overlay of brokers.

Figure 2.2: Possible network topology in Pub/Sub pattern.

2.1.2. Network Topology

Until now, we have discussed publishers and subscribers without addressing the man-
agement of messages. In a Pub/Sub system, there are three primary alternatives for
organizing the system [2]:

• Centralized broker: In this architecture (Figure: 2.2a) a unique logical server
entity, called broker, is responsible for receiving, filtering, and dispatching messages
from publishers to subscribers [2] [19]. Since the logical central node is unique it
represents both a bottleneck and a single point of failure. In spite of that, this
architecture is adopted in most of the commonly used protocol deployments.

• Overlay of brokers: In an overlay of brokers (Figure: 2.2c) we have multiple
brokers interconnected in a network. A client connects to one of the brokers and
Pub/Sub functionality is realized by means of a distributed algorithm into the broker
network [2]. The architecture is designed to be transparent to the clients interacting
with the connected broker. However, as the message distribution is handled by the



12 2| State of the Art

brokers, this system scales better than the centralized broker architecture.

• Peer-to-peer: In a full peer-to-peer architecture (Figure: 2.2b) there is no need
for a middleware, messages are directly routed between peers, which acts both as
a client and a router at the same time [2] [12]. This architecture is suitable for
event dissemination scenarios involving a limited number of participants and a small
geographical scale due to di"culties in network management since nodes can join
and leave at any time and each node needs to be aware of the network state.

2.1.3. Protocols

Various publicly or commercially available systems implement the Pub/Sub paradigm.
Each implementation di!ers in elements such as supported network topology, subscription
model, Quality of Service (QoS), and application field they best fit in.
In the following section, we introduce some common implementations, highlighting their
relevant properties and main application fields.

MQTT (Message Queuing Telemetry Transport Protocol)
MQTT is one of the oldest machine-to-machine Pub/Sub protocols released by IBM in
1999. Table 2.1 summarizes the key properties.

Property

Year 1999
Architecture Centralized Broker
Subscription model Topic-based
Header size 2 Byte
Message size Up to 256 MB
Quality of Service QoS0, QoS1, QoS2
Transport protocol TCP
Security SSL/TLS
Encoding format Binary
Methods Connect, Disconnect, Publish, Subscribe, Unsub-

scribe, Close

Table 2.1: MQTT properties.



2| State of the Art 13

MQTT is a lightweight protocol focused on wireless devices, designed to fit constrained
and unreliable networks characterized by high delay and low bandwidth, and based on
TCP communication and TLS/SSL security.
Being a binary protocol, MQTT does not impose a fixed payload data type but it re-
quires a maximum payload size of 256MB plus a fixed 2-byte header. MQTT relies on
a centralized broker architecture providing a topic-based subscription model [15][13][19].
In the MQTT architecture, clients establish connections with a central broker, and both
publishers and subscribers indicate their interest in a specific topic.
Topics in MQTT utilize two wildcard levels, enabling the matching of di!erent data
ranges. [19][9]. The single level wildcard (+) replaces one topic level, for example, build-
ing/+/temperature matches topic like building/21/temperature or building/20/temperature
but it does not match a topic like building/deib/21/temperature. On the opposite, the
multi level wildcard (#) is able to match multiple topic levels but only at the end of the
topic. The topic building/#/temperature is not valid since the wildcard is placed in the
middle; building/deib/# is valid and it matches all the topics that have as root levels
building/deib, for example, building/deib/21 as well as building/deib/20/temperature and
so on.
Furthermore, MQTT supports three di!erent QoS levels between a publisher/subscriber
and the broker to ensure di!erent levels of assurance of data distribution [19]:

• QoS0 (At most once): a message is delivered once or not at all. MQTT does not
provide any guarantee of reception for the messages sent.

• QoS1 (At least once): a message can be sent at least once, and it can also be sent
multiple times by setting the duplicate flag.

• QoS2 (Exactly once): a message is sent exactly once by utilizing a 4-way handshake
method. This ensures that a sent message is received without duplication or loss.

Finally, MQTT provides retained messages, deliverable also to new subscribers that match
the message topic, and wills that are messages on a defined topic, the broker sends in
case of an unanticipated detach.

MQTT-S (MQTT for Sensors)
MQTT-S is a modified version of the standard MQTT protocol to meet requirements
of low-end, battery-operated sensor/actuators devices over bandwidth-constraint wireless
sensor networks (WSNs) [9].
According to Hunkeler et al. MQTT-S is designed to be as close as possible to MQTT



14 2| State of the Art

Broker

Gateway

(a) Transparent gateway.

Broker

Gateway

(b) Aggregating gateway.

Figure 2.3: Gateway types in MQTT-S.

and to support all the features of MQTT to have a smooth integration [9].
The complexity is shifted to the broker/gateway side, allowing the devices to remain simple
and lightweight. The protocol utilizes UDP, which does not require a connection-oriented
or in-order delivery mechanism. Additionally, packet length is reduced to a maximum of
128 bytes, with a payload limit of 64 bytes. These design choices make MQTT-S suitable
for various network types, including IEEE 802.15.4, the same transmission layer ZigBee,
for example, uses too. However, two services must be provided:

• Point-to-point data transfer (unicast service) that enables message transport be-
tween two points based on the network address;

• One-hop broadcast data transfer that lets a sent message be received by all the
nodes in the transmission range: this is typical of all wireless networks.

In MQTT-S, a gateway appears between sensor/actuators and the broker as seen in Fig-
ure: 2.3. This gateway is responsible for translating messages between MQTT-S and
MQTT, as the sensors connect to the gateway, which in turn connects to the broker.
Two types of gateways can be deployed based on how they exchange messages with the
broker. The first type is the transparent gateway, seen in Figure: 2.3a, which main-
tains a separate MQTT connection for each MQTT-S device. While this implementation
is simpler, it becomes challenging to scale as the number of connections between the gate-
way and the broker increases with the number of devices in the sensor network.
The second type is the aggregating gateway, seen in Figure: 2.3b, which maintains a
single connection with the broker and selectively transports messages from the WSN to



2| State of the Art 15

the broker. This approach enables for more e"cient utilization of resources and better
scalability, as the gateway decides which messages to forward to the broker. The aggre-
gating gateway does not act as a broker, it just aggregates multiple messages to reduce
the number of active connections between the sensors and the broker while the broker
remains the central element for message dispatching.

AMQP (Advanced Message Queuing Protocol)
AMQP is a lightweight machine-to-machine message-oriented protocol designed to pro-
vide real-time, low-cost, and reliable group communication. It supports di!erent types of
communication like Pub/Sub, Req/Resp, direct messaging and so on [16] but we focus on
Pub/Sub version. Table 2.2 summarizes the key properties.
Based on the client/broker model it includes di!erent elements in its architecture: the

exchange receives messages from a producer (publisher) and routes them to a specific
queue; the routing key is the virtual address for the target queue and it can be a topic,
a header or computed as a predicate of the payload; the queue represents the element in
which subscribers subscribe, it can be private or shared, durable or transient, permanent
or temporary and, combining di!erent properties, we can use it to build di!erent interac-
tion patterns like store-and-forward, Pub/Sub, temporary reply queue [25][13][16][15].
AMQP is a powerful protocol to interconnect applications in an easy way ensuring per-
formance since it can process large volumes of data in a relatively short time compared

Property

Year 2003
Architecture Brokered
Subscription model Multiple
Header size 8 Byte
Message size Negotiable
Quality of Service Settle Format, Unsettle Format
Transport protocol TCP, SCTP
Security SSL/TLS, IPSec, SALS
Encoding format Binary
Methods Consume, Deliver, Publish, Get, Select, Ack, Delete,

Nack, Recover, Reject, Open, Close

Table 2.2: AMQP properties.



16 2| State of the Art

with other protocols like HTTP. It also provides two QoS levels: the unsettle format is
unreliable and it is similar to MQTT QoS0 while the settle format is the reliable one close
to MQTT QoS1 definition.

2.2. Request/Response

The Req/Resp (or Query/Reply) message pattern is one of the basic mechanisms of the
Internet. Generally, a Req/Resp interaction is initiated by the client (requester) that
contacts a server (replier). The server is responsible for receiving the request, processing
the desired information, and returning the response to the client.
This pattern is synchronous, meaning the client waits for the server’s response before
proceeding. To prevent endless waiting in the event of network failure, the requester sets
a timeout. If the timeout expires, the expected response was not received within the
specified time, considering, as a consequence, the request unsuccessful.
The Req/Resp pattern provides a mechanism to perform also asynchronous operations,
which, for sure, can not stay inside the interval of the timeout. The future-based approach
uses an object representing the result of an asynchronous operation. When making a
request the function creates and returns a future object, representing the ongoing request.
The client can then decide whether to wait for the response or proceed with other tasks.
Similarly, the promise-based approach lets a request to crate and return a promise object
that represents the response that eventually arises.

2.2.1. Protocols

The Req/Resp paradigm is widely recognized through its primary implementation, HTTP.
However, in this section, we explore not only HTTP but also other protocols that follow
this pattern.

HTTP
HTTP is the web messaging protocol over TCP (and SSL/TLS) and it represents the
standard in the world wide web since 1997. It is a Req/Resp stateless protocol that uses
Universal Resource Identifiers (URIs) instead of topics to identify data, the server sends
data using URI while clients receive data in a particular URI [15]. Table 2.3 reports a
summary of key properties of HTTP/1.1, HTTP/2.0, and HTTP/3.
HTTP is a text-oriented protocol, which does not define a predefined header and payload

size; instead, these dimensions vary based on the server technology being used. However,
due to the widespread acceptance of HTTP, various functionalities such as pipelining,



2| State of the Art 17

HTTP (1.1 and 2.0) HTTP/3

Year 1997 and later 2022 (proposed)
Architecture Client/Server Client/Server
Header size Undefined Undefined
Message size Undefined Undefined
Quality of Service Limited (via TCP) Limited (via TCP)
Transport protocol TCP UDP (QUIC), TCP
Security SSL/TLS SSL/LTS, QUIC
Encoding format Text Text
Methods Protocol Standard Protocol Standard

Table 2.3: HTTP properties.

persistent connections, and chunked transfer encoding are typically available in all the
commercially available implementations.
HTTP/1.1 represents the default version today even if version 2.0 exists as a standard
too. While HTTP/2.0 is widely supported by major web browsers and servers, it is not
enabled by default and requires specific configuration.
Establishing an HTTP connection between the client and server, especially when using
SSL/TLS, involves a three-way handshake that introduces delays that can be significant
in certain situations. Version 2.0 partially addresses this issue maintaining the original
handshake pattern. In fact, HTTP/2.0 uses a binary format instead of the original plain-
text of the previous versions in addition to the introduction of TLS False Start, which
allows a client to send application data to the server while they still completing the last
handshake for SSL/TLS connection establishment [14].

The next generation of HTTP, known as HTTP/3, was o"cially proposed as a standard
in June 2022 (RFC 9114) [3]. The key di!erence between the previous version is the usage
of QUIC (Quick UDP Internet Connection) protocol, originally developed by Google.
In HTTP/3.0, QUIC replaces the three-way handshake used for connection establishment,
resulting in reduced delays. This is achieved by combining a fast UDP-based transport
with TLS as an integral part of the connection [14][6].
In Figure 2.4 we present the connection establishment di!erence between HTTP utilizing

the latest version of TLS and HTTP over QUIC.
Furthermore, in TLS 1.2 and earlier versions, the handshake process involves one more



18 2| State of the Art

Client Server

TCP

Handshake

TLS

Handshake

Data

transfer

(a) TCP + TLS 1.3.

Client Server

QUIC
Handshake

Data
transfer

(b) HTTP over QUIC.

Figure 2.4: Connection establishment di!erences in HTTP.

round trip between the client and server before the secure connection can be established.
This additional handshake introduces extra latency, particularly in situations where net-
work conditions are less than optimal or when there are delays in transmitting the hand-
shake messages.

CoAP
Constrained Application Protocol (CoAP) is a lightweight machine-to-machine protocol
released in 2010 by the IETF CoRE group. It is a Req/Resp protocol but it also provides
a Resource/Observe pattern similar to Pub/Sub [15]. Table 2.4 summarizes the most
relevant properties of CoAP.
CoAP is often described as a slim version of HTTP since it is too heavy for constrained
devices, or a fresh approach to it, designed specifically for limited resource consumption.
The core concept of CoAP involves the use of UDP instead of TCP, along with a simple
message layer for retransmitting lost packets. In terms of QoS, CoAP supports only two
types of messages: confirmable (requiring acknowledgment) and non-confirmable.
CoAP has a compact 4-byte header and a binary payload, it provides similar function-
ality to common HTTP methods such as GET, PUT, POST, and DELETE. Resource
identification is achieved through the use of URIs, while response codes are encoded in a
single byte [15][4].



2| State of the Art 19

Property

Year 2010
Architecture Client/Server
Header size 4 byte
Message size Small and undefined
Quality of Service Confirmable and non-confirmable
Transport protocol UDP, SCTP
Security DTLS, IPSec
Encoding format Binary
Methods GET, POST, PUT, DELETE

Table 2.4: CoAP properties.

2.3. Hybrid Approaches

Standardized and commonly available protocols can have more than one model available.
For example AMQP, we describe as Pub/Sub, provides also Req/Resp capabilities as well
as CoAP, which is mainly a Req/Resp protocol, can work also as Resource/Observe.
An emerging protocol, Zenoh, unifies Pub/Sub, Req/Resp, and REST models.

2.3.1. Zenoh

Eclipse Zenoh is a communication protocol developed by ZettaScale and included in the
Eclipse Foundation projects [27][26]. It focuses on enabling seamless communication be-
tween cloud and edge computing environments, integrating nodes across di!erent network
layers under a unified protocol.
Zenoh utilizes a Pub/Sub-based paradigm and incorporates geo-distributed storage, query,
and computation capabilities, aiming to unify data in motion, in use, and at rest. Its fully
decentralized architecture ensures fault tolerance, eliminating the need for a central broker
or server. Nodes can be configured in various ways, including a fully distributed system
with peer-to-peer communication.
Zenoh supports multiple communication protocols, including TCP, UDP, TLS/mTLS,
QUIC, WebSocket, UNIX-Socket, and even non-IP protocols like Bluetooth and serial con-
nections [12]. Furthermore, Zenoh facilitates the coexistence of multiple network topolo-
gies, as depicted in Figure: 2.5, enabling device interconnectivity even over the public
internet, typically facilitated by Zenoh routers [23]. Zenoh provides the functionalities of



20 2| State of the Art

both producing and receiving data and routing. By combining these functionalities, it is
possible to create three di!erent device configurations:

• Router: it is a fundamental component of the Zenoh stack, playing a crucial role
in managing data flow across di!erent endpoints within the system. Employing a
Pub/Sub model, the router e"ciently distributes data, ensuring that it reaches the
intended destinations. As other protocols, one of its notable features is the ability
to automatically detect and adapt to changes in the network topology. This capa-
bility ensures that data is consistently delivered to the correct destinations, even
in the presence of dynamic network changes. By dynamically adjusting its rout-
ing mechanisms, the Zenoh router maintains reliable and e"cient data distribution
throughout the system.

• Peer: it represents any device or system that is running the Zenoh protocol and
capable of sending and receiving data within a distributed system. A Zenoh peer can
be a physical device, such as a sensor, actuator, or gateway, or it can be a virtual
device running on a cloud-based infrastructure. Regardless of its form factor, a
Zenoh peer is able to communicate with other peers in the system using the Zenoh
protocol, allowing data to be exchanged in a highly scalable and e"cient manner
since a peer includes the routing capability too. Each Zenoh peer is responsible for
managing its own data sources and subscriptions, and can dynamically discover and
connect with other peers as needed.

• Client: A Zenoh client refers to a software component or application that employs
the Zenoh protocol to establish communication with other components or devices
within a distributed system. However, unlike routers and peers, a Zenoh client
is typically an end device and does not possess the capability to act as a router
for other devices. It typically uses the Zenoh API to publish or subscribe to data
sources, and may also use other features of the Zenoh stack, such as query and store,
to retrieve and manipulate data.

As shown in Figure 2.5, the Zenoh infrastructure accommodates the coexistence of multi-
ple device configurations, enabling the creation of various network topologies based on the
configuration each device has. [23]. Some of the configurations that can be implemented
include:

• Mesh: Mesh topology refers to a network configuration where devices are intercon-
nected in a decentralized manner. So, it allows data transmission directly between
any two devices within the network, creating multiple communication paths and
increasing redundancy. This redundancy enhances network reliability, as it allows



2| State of the Art 21

Routed

CliqueBrokered

Mesh

Zenoh Router

Zenoh Peer

Zenoh Client

Figure 2.5: Zenoh network topologies.

for alternative routes in case of a connection failure or network congestion. Mesh
topologies are common in large-scale networks.

• Clique: A clique topology is a fully connected network where each node has a
direct link to every other node. This topology promotes robust and e"cient com-
munication between devices as there are no intermediaries or bottlenecks in the
network. Information can be quickly disseminated to all devices within the clique,
making it suitable for scenarios that require high levels of interconnectivity, such as
small-scale peer-to-peer networks or collaborative computing environments. How-
ever, as the number of devices increases, the complexity and cost of maintaining
direct connections between all devices also grows, which limits its scalability.

• Routed: A routed topology refers to a network configuration where data flows
through a central router or a set of interconnected routers. Devices within the
network are connected to the router(s) and communicate with each other through
these routing nodes. This topology is suitable for large networks where scalability
and centralized control are essential.

• Brokered: The brokered topology facilitates communication between connected
devices through a central entity called broker, which acts as an intermediary for
exchanging messages and coordinating communication. The broker is responsible for
receiving messages from devices and delivering them to the appropriate recipients
based on predefined rules or subscriptions. This topology promotes decoupling



22 2| State of the Art

between devices, as they do not directly communicate with each other but rely on
the broker for message routing. In Zenoh, a peer or a router, that is, a node with
Zenoh routing capabilities represents the broker.

Finally, within a Zenoh network, both peers and clients have the capability to autonomously
discover and connect to a router or another peer through UDP multicast, provided that
the network supports this feature. This automatic discovery process is commonly known
as scouting [23]. However, in scenarios where UDP multicast is not supported or available
in the network infrastructure, manual configuration of the links between peers and routers
becomes necessary.

Zenoh o!ers a diverse range of communication APIs that facilitate various forms of data
exchange and interaction within a distributed system. Some of these APIs include:

• Publish-Subscribe API: This API provides a flexible and e"cient way to dis-
tribute data between multiple publishers and subscribers within a system. Pub-
lishers publish data on a specific topic, and subscribers receive data on that topic.
The API also supports wildcards, enabling subscribers to receive data on multi-
ple topics using a single subscription. Wildcards are similar to MQTT ones, in
fact, * matches a single level exactly like + while ** has the same meaning of #.
However, in Zenoh, wildcards can be used at any level, in fact, there are no restric-
tions, as happens instead in MQTT. Finally, Zenoh introduces a new wildcard $*,
which lets to match a part of the topic level, for example, building/de$*/temperature
matches building/deib/temperature as well as building/deposit/temperature but not
building/dica/temperature.

• Query API: This API provides a way to query data stored within a Zenoh net-
work. It allows to build queries by using a simple syntax that supports filtering,
aggregation, and other data manipulation operations.

• Store API: This API provides a key-value storage to store and retrieve data within
a Zenoh network. The storage is distributed and fault-tolerant, providing high
availability and scalability.

• Peer-to-Peer API: This API provides a way to directly connect two Zenoh peers
and exchange data between them. This can be useful for low-latency, high-bandwidth
communication between devices in a distributed system.

• REST API: This API provides a simple RESTful interface for interacting with a
Zenoh network. It allows to publish and subscribe to data, query the network, and



2| State of the Art 23

interacting with the key-value store. This also includes an admin space letting a
network admin to inspect and analyze connected clients and devices’ roles.

2.4. Comparison

We explored two communication paradigms and their widely used protocols. By means
of a qualitative analysis, in this section, we delve into their application within Internet of
Things (IoT) systems. By referring to an IoT system, we take into account an architecture
that considers not only sensors and their communication protocols, but also the edge and
cloud infrastructures required for data processing, storage, and retrieval. In this scenario,
it is important to select protocols that best fit the required layer in terms of performance,
scalability, and, most importantly, resource consumption.
The two communication models, Pub/Sub and Req/Resp, have distinct characteristics
and are suited for di!erent scenarios. The Pub/Sub model is suitable for data dissemi-
nation and event-driven communication. It o!ers a decoupled and asynchronous commu-
nication pattern, where publishers and subscribers operate without being aware of each
other. This model excels in scalability because publishers and subscribers are decoupled,
making it suitable for applications that rely on real-time event notification and reaction,
such as environmental monitoring or intrusion detection. Additionally, Pub/Sub helps
reduce network tra"c as subscribers only receive data they are interested in, minimizing
unnecessary data transmission.
On the other hand, the Req/Resp model is employed when direct communication between
two nodes is necessary, enabling control and coordination of individual devices, as well
as specific data retrieval. This model also provides synchronous communication, ensuring
that requests are accompanied by timely responses. It is beneficial in scenarios where
precise data from particular sensors or devices is required.
In summary, the Pub/Sub model is advantageous for data dissemination, event-driven
scenarios, and scalability. On the other hand, the Req/Resp model is suitable for direct
communication, control and coordination, specific data retrieval, and synchronous com-
munication. The choice between the two models depends on the specific requirements and
objectives of the application.

There are numerous studies in the literature focusing on the performance of protocols,
particularly in relation to their implementation in sensor nodes. Sensor nodes are highly
resource-constrained devices, characterized by their small size, reliance on battery power,
limited computational capacity, and the need to optimize power, network, and space
resources.



24 2| State of the Art

We consider a range of parameters that play a crucial role in evaluating various protocols.
These parameters encompass aspects such as permitted message size, message overhead,
resource requirements, latency, bandwidth, interoperability, standardization, reliability,
and so on . . .
In Table 2.5, we show an overview of each protocol along these properties. By examining
these metrics, we gain a deeper understanding of the strengths and weaknesses of each
protocol under consideration [15][13][12].

MQTT AMQP HTTP CoAP Zenoh

Type Pub/Sub Pub/Sub Req/Resp Req/Resp Both

Max message size Mid-Low Mid-High High Low High
Message overhead Mid-Low Mid-High High Low Mid-Low [21]
Resource requirements Mid-Low Mid-High High Low Variable
Latency Mid-Low Mid-High High Low Low
Bandwidth Mid-Low Mid-High High Low Variable
Interoperability Low Mid-Low High Mid-High High
Standardization Low Mid-Low High Mid-High -
Reliability High Mid-High Low Mid-Low High [22]

Table 2.5: Protocol comparison.

In Table 2.5, we employ qualitative labels to indicate each property of the mentioned
protocols since numbers coming from studies, in this case, do not meet our goal given
that test sets are di!erent in terms of data type, message size, and architecture used. The
analysis specifically focuses on comparing the mentioned protocols. The labels "Low" and
"High" represent the two extremes, while "Mid-Low" and "Mid-High" indicate a middle
position that leans more toward the lower or higher end, respectively. This approach aims
to emphasize the strengths and weaknesses of each protocol in IoT system applications.
It is also important to clarify the concept of "Standardization". In this context, it does
not imply that a specific protocol is o"cially recognized as a standard. Rather, it refers
to the consistency and uniformity of functionality and guarantees across di!erent imple-
mentations of the protocol itself.
We can observe that Zenoh strikes a tradeo! across all the properties. It o!ers notable ad-
vantages, such as high reliability and low latency in scenarios where payload size requires
HTTP. Similarly, in situations where MQTT is applicable, Zenoh excels in providing
enhanced interoperability. Finally, due to its versatility in adapting to diverse scenar-



2| State of the Art 25

ios, Zenoh emerges as a compelling alternative to other protocols, facilitating seamless
integration of sensors, cloud environments, and various interconnected systems.

2.5. Location Awareness

Over the last few decades, researchers direct their attention toward location-sensing tech-
nologies and applications that are aware of positioning. The primary challenge they
address revolves around accurately determining physical locations. Over the years, nu-
merous solutions emerged.
At the forefront of these solutions is the Global Positioning System (GPS). This system
achieves global ubiquity and is exceptionally well-suited for outdoor applications, that rely
on satellite signals. In indoor environments, where signals might be unreliable or absent,
GPS does not represent the optimal solution. Researchers figured out that indoor appli-
cations require di!erent approaches and radio systems such as Wi-Fi, Bluetooth, and/or
RFID represent possible solutions [8] with an accuracy of 1 to 5 meters. Ultrawide-Band
(UWB) technology, instead, emerges as an indoor localization system in the last few years,
it exists since 1976 but it was used mainly in military applications. UWB provides accu-
racy within the centimeter range, high-speed rate, and low cost [24] making it perfect for
indoor localization.
Regardless of the solution used to obtain the position of an entity, we can summarize
location data as an object whose attributes can be coordinates (x, y, z) or semantic
representations of a place, such as (building, floor, room) or (state, region, city).

Orthogonally to the acquisition of position through physical systems, researchers also
consider possibilities of localization at the level of communication protocols as well as
at the software level, mainly related to the concept of mobility. The literature divides
mobility into two categories [1]:

• Physical mobility: it refers to a device that establishes and terminates connections
as it moves across networks. For example, when a device connects to various public
Wi-Fi networks, or when we continue to browse on LTE/5G from the university
network and then connect to the home network.

• Logical mobility: it denotes a device that possesses awareness of its changing
location without moving physically, for example, a device that changes the access
point under the same network. For instance, when we change di!erent classrooms
on campus without disconnecting from Wi-Fi, even though we remain connected to
the same network, we change the access point used.



26 2| State of the Art

Mobility, whether physical or logical, deals with two opposite concepts: location trans-
parency and location awareness. In our study, we focus on location awareness since we
want both devices and the network to be aware of the location of a device.
Within IoT systems, Pub/Sub protocols align most e!ectively with a majority of use cases.
The literature is relatively sparse concerning studies on the application of Pub/Sub pro-
tocols in a location-aware context. Among the existing studies, the emphasis lies on
content-based architectures [1][5]. The primary reason behind adopting a content-based
architecture is the strength of filters that can be employed during subscription setup.
This empowers developers to implement location-based subscriptions by leveraging the
positional information contained within published messages. For instance, a newsfeed
operates as a content-based system, where a subscriber can choose to follow news topics
of interest, such as "technology" news published in the state of "Italy" or in the state the
user is in.
However, we deal with more precise positioning, such as that provided by GPS or a specific
indoor location. Content-based Pub/Sub solutions in the literature, similar to the one
proposed by Cugola et al. [5], take into consideration a client’s physical location within
the network. They rely on the brokers to which clients are connected, approximating the
device’s location based on the position of the first element of the communication infras-
tructure. These systems also necessitate adjustments in the routing system to function
e!ectively. Nevertheless, these solutions do not account for scenarios involving "virtual"
positional usage. For instance, they do not address situations where a subscriber deployed
in the cloud lacks a physical presence at a specific location but remains associated with
it.

Zenoh, being a topic-based Pub/Sub protocol and not content-based, does not feature
filters for implementing location awareness applications. Nevertheless, as we discuss in
Section 2.4, it is the protocol that o!ers the best trade-o! between its properties and it is
most suitable for large-scale IoT applications. For this reason, we consider the possibility
of extending Zenoh to fit location-aware applications.



27

3| Problem Statement And
Design Space

In this chapter, we formulate the research question for this work. We delve into the
underlying motivation driving this research, explore the existing solutions documented in
literature that are relevant to the chosen scenario and technology, and ultimately, present
the solution we opted for, along with a thorough rationale for its selection.
In Section 3.1 we present the motivation that led to this thesis work, in Section 3.2 we
state the problem, in Section 3.3 we discuss three possible solutions we considered, and
in Section 3.4 we present the high level solution we choose for this work.

3.1. Motivation

In today’s interconnected world, the proliferation of Internet of Things (IoT) systems
revolutionized the way we perceive and interact with our surroundings. At the heart of
this transformation lies the significance of data [10]. In every facet of our daily lives,
IoT systems quietly gather, transmit, and analyze an astonishing volume of data. This
data encapsulates insights that hold the potential to enhance our lives in unprecedented
ways [17]. From optimizing energy consumption in our homes to predicting tra"c patterns
for smoother commutes, data, and its transmission covers a central role. In a large-scale
system such as a city or an entire country the relevance of a piece of data, many of the
times, may depend not only on the data but also on the position it is generated.
Let us take into consideration, for example, the city of Milan and the amount of energy
consumed per hour. In such a scenario, as illustrated in Figure 3.1, our focus could be
on obtaining real-time energy consumption data from a specific area. This data would
enable us to make precise energy distribution adjustments customized to local needs
without taking into account data coming from neighboring areas. Simultaneously, data
from multiple areas provide a comprehensive view of the situation, particularly in critical
scenarios, or facilitate statistical analysis.



28 3| Problem Statement And Design Space

Centralized

Local

Local

Local

Local

Figure 3.1: Example of data interest in Milano areas.

In a large-scale system, ensuring that a piece of data published in a given location
is received only by subscribers in the interested location area represents an open
problem. Introducing the location-aware functionality in the Pub/Sub topic-based
Zenoh protocol represents the challenge.

In conjunction with data and locations, a large scale IoT system must ensures three core
capabilities:

• Live data: It refers to real-time information that is constantly updated and reflects
the most current state of a system or phenomenon. Live data is dynamic in nature,
reflecting the current state or condition of a system, process, or phenomenon, o!ering
immediate insights without any significant delay.

• Mobility: It refers to the movement and changes in the attributes of entities that
generate, transmit, or interact with data within a given environment. In this case
the location changes of an entity that is moving across areas must be reflected into
the system.

• Historical persistency: It represent the dual w.r.t. live data. It refers to the
potential of preserving data and its associated attributes over time, enabling their
retrieval for future utilization, particularly for statistical analysis.



3| Problem Statement And Design Space 29

3.2. Problem Statement

In large-scale IoT systems, the most commonly employed protocols are those based on the
Pub/Sub model with topic-based subscription model [18]. Unfortunately, among these
protocols, there is no simple way to e!ortlessly link location information to a particular
data point [20]. The options for a subscriber to e!ortlessly subscribe to a topic that
corresponds to a data point within a designated area of interest are notably absent.

Let us consider, for example, a warning system for drivers that notifies them of road
accidents that occur within a 2 km radius from their location. A potential system would
publish information related to such an event in a topic like road/notification/accidents,
which would also correspond to the subscriber’s topic. In this scenario, it is not possible
to know a user’s location beforehand, neither define "zones" to which the user belongs
due to the mobility of the subscriber. The entities within the system evolve over time,
vehicles move along the road network, and a potential accident can occur in various
locations. If we consider applying the system to a region or even an entire state, it is
easy to understand how it is impossible to define geographic parameters beforehand for a
driver who is interested only in what happens in a 2km range from himself.
This scenario is an example of why it is important to define a system that is able to
adapt to changes over time in addition to being able to manage location information with
di!erent granularity while ensuring su"cient performance with regard to its users.

3.3. Solution Space

Among the protocols discussed in Chapter 2, Zenoh appears to have a better trade-
o! among its properties. Not only Zenoh is a Pub/Sub topic-based protocol, it is also
designed to easily integrate devices from sensor to the cloud, making it perfect for our
target application.
Furthermore, Zenoh o!ers good performance also in large-scale systems. In practice,
messages are solely routed when a corresponding receiver for a given topic exists. In
its routed configuration, Zenoh intelligently selects the optimal path, mitigating flooding
events and therefore enhancing overall e"ciency.
To establish a connection between data and position within the Zenoh framework, we
outline four potential designs:

1. the utilization of multiple topic levels,

2. the usage of the message payload directly,



30 3| Problem Statement And Design Space

3. a refinement of routing processes, and

4. the encoding of spatial information to extend the Zenoh key expression language.

3.3.1. Location as a Topic

When considering a topic-based protocol approach, the initial solution that naturally
emerges involves incorporating location information within the topic itself. This approach
enables the allocation of one or more topic levels to convey location information. While
this empowers publishers to accurately indicate their geographical position, subscribers
would be required to employ wildcards and undertake filtering processes on the receiver
side to make use of this information.
Consider, for instance, the topic <latitude>/<longitude>/temperature/external, which
represents the temperature reading of an external sensor located at (<latitude>,<longitude>)
point. Within the context of the Pub/Sub paradigm, a subscriber can subscribe to this
same topic and receiving published data whenever a new new message is published.
Conversely, a subscriber with an interest in obtaining sensor values within a specific range
from its own location, for example, to calculate the mean external temperature, should
subscribe to */*/temperature/external since it does not exist a way to describe a space
using a point. By doing so, it receives messages from all external temperature sensors
and it must discard those values coming from out-of-range locations.
In Figure 3.2 we show a way in which it is possible to make message discarding trans-

parent to the developers. We can insert an intermediary layer between the application
and the Zenoh Subscriber API. This layer’s purpose is to filter the messages received by

Zenoh Subscriber

API Filter

Application

*/*/temperature/external

Location information

Discard out of 
range messages

Subscribe using
wildcards

Figure 3.2: Location as a topic.



3| Problem Statement And Design Space 31

the subscriber and forward to the application layer only those that match the specified
location criteria provided by the application layer.
Although this method does provide a partial solution to the transparency concern for de-
velopers, it still falls short of fully addressing the issue of unnecessary message deliveries.
This limitation arises because it only allows for subscribing to either a single sensor or all
sensors, with no intermediate option available.

3.3.2. Location in the Payload

Another solution that naturally emerges involves incorporating location information within
the payload. This solution reduces the topic complexity compared to the one proposed
above, but it increases the payload size.

In the same scenario proposed above, the topic temperature/external represents any
external temperature sensor reading while the message payload not only contains the
temperature reading but also the latitude and the longitude of the sensor location, result-
ing in a payload like:

{
"latitude": 45.10,
"longitude": 9.25,
"temp_c": 12.25

}

This time, subscribers do not need a wildcard since the topic matches any location.
Nonetheless, a filtering process remains essential for obtaining the desired readings. In

Zenoh Subscriber

API Filter

Application

temperature/external

Location information

Discard out of 
range messages

Subscribe full
topic

Figure 3.3: Location in the payload.



32 3| Problem Statement And Design Space

this case, rather than filtering based on the information within the topic, we rely on the
data contained in the payload.

As illustrated in Figure 3.3, it remains feasible to insert an equivalent layer from the
previous solution between the application and the Zenoh Subscriber API, maintaining
transparency for the developer. While this approach does o!er a partial remedy for
developer transparency concerns, it does not fully resolve the problem of superfluous
message deliveries, as we continue to discard messages at the receiver’s side.

3.3.3. Routing

An alternative approach involves making adjustments to Zenoh’s routing components.
This would involve incorporating location information into the message by introducing
a new header, thereby making location information an inherent attribute of the message
rather than including it in the payload or topic. At this stage, Zenoh routers need a logic
adjustment to interpret the new header and utilize its data for identifying subscribers of
a publisher. This identification should not solely rely on the topic; it should also involve
a matching process that incorporates both the location header and the topic.
Zenoh maintains a distributed routing tree that represents the topic hierarchy, which ac-
celerates the routing process when a subscriber is already identified. To implement this
solution, we must also make adjustments to the data structure. This involves incorpo-
rating location information by introducing distributed tables that establish connections
between subscribers based on both topic and location. This is necessary because directly
adding location as an attribute to the tree node, which represents a topic level, is not
feasible, given that a topic can be associated with multiple locations, and conversely, a
location can be linked to multiple topics.
Nevertheless, it is important to emphasize that altering the routing mechanisms and
the algorithms employed by Zenoh to maintain distributed information among its nodes
carries the potential risk of compromising the performance assurances provided by the
current state-of-the-art version. Although this solution would address both transparency
and unnecessary message transmission issues, it is quite clear that it is not optimal.

3.3.4. Encoding Spatial Information

Zenoh provides three wildcards: *, **, and $*. According to Zenoh’s documentation,
the $ symbol serves as a special character that cannot be used as a regular letter within
a topic level; instead, it is reserved for representing special expressions. This $ symbol
enables the extension of Zenoh’s key expression language with custom behaviors at the



3| Problem Statement And Design Space 33

topic level where it is utilized. For instance, when using the $* wildcard in a topic, like
city_$*/temperature/external, Zenoh recognizes the wildcard and matches all expressions
that begin with "city_".
With the $ symbol, Zenoh allows for the incorporation of new specialized keys into its
key expression language. Specifically, we can create a new key that includes the necessary
location information to introduce location-aware capabilities to Zenoh.

With the $ symbol, we have the flexibility to define customized matching behaviors
for the new key, going beyond simple string equality. This enables us to handle
encoded spatial information and perform matches based on device location and areas
of interest. We gain the ability to govern how Zenoh routes messages from publishers
to subscribers by matching a unique topic in two di!erent and independent ways.

In this solution, we can place the necessary information within the topic using a single
level. By introducing a new matching function, we achieve our goal without the need to
modify any internal libraries or data structures.

3.4. Solution

After a comprehensive exam of the three alternatives, we believe that introducing a new
key expression represents the most optimal choice. This decision is underpinned by three
primary reasons.
Firstly, by opting for the creation of a customized key expression, we are able to preserve
the integrity of Zenoh’s routing mechanisms as well as the performance of the original
version. This approach avoids the need for modifications to the core infrastructure, keep-
ing full compatibility with the original version of Zenoh protocol.
Secondly, it allows us to implement a highly customizable matching function. This encom-
passes not only location-based criteria but also takes into account the diverse attributes
of devices, such as their roles as publishers, subscribers, or queryable entities. This level
of matching granularity opens the door to a myriad of possibilities for refining the routing
process to suit specific use cases, such as custom domain definition for spatial data and/or
custom behavior for intersecting domains, such as a Zenoh queryable device belonging to
di!erent partially overlapping areas. Furthermore, the use of a custom key expression
allows us to control message routing without the need to make changes to Zenoh’s core
routing library. Instead, we can simply choose target subscribers based on the encoded
information within the topic. Thirdly, adopting the encoding approach, joined with a
strategic API modification, guarantees a transparent experience for developers. By im-



34 3| Problem Statement And Design Space

plementing this matching mechanism, developers are alleviated from the responsibility of
explicitly managing location data and matches based on complex criteria.

In practice, the concept involves crafting a unique key denoted by the symbol $ along with
a distinctive prefix. To illustrate, consider the prefix $zla_ as our designated marker. Sub-
sequently, the prefix is augmented with a character that identifies the encoding method,
followed by a string containing the requisite location information. We introduce also the
encoding methods char since we can implement multiple matching functions, targeting
multiple encoding methods with di!erent purposes.
To ensure a seamless experience for developers, we strategically position this newly for-
mulated key at the outset of the topic. This incorporation is orchestrated through mod-
ifications to the Zenoh API. For instance, when a developer defines a topic like tem-
perature/external, the actual outcome is $zla_x_xxxxxx/temperature/external, where
$zla_x_xxxxxx represents the new key expression used to transport location data and
pilot message routing. This transformation is concealed from the developer’s view.
These special keys are readily recognized, parsed, and submitted to a matching process
that di!ers from mere string equivalence. Rather, the matching process uses the encap-
sulated information within the key.

In Figure 3.4, we present an example illustrating the high-level behavior of a Zenoh
network instance featuring location awareness. Within this network, we define two distinct
zones, with each zone accommodating two publishers. These publishers are assigned
specific topics, namely, int/temp/c and ext/temp/c, to define temperature values in °C,
respectively, for indoor and outdoor conditions. In Zone 01, there is a subscriber who is
subscribed to the int/temp/c topic and has a corresponding storage entity for that topic.
While there may be other entities subscribing to the same topic, they do not receive
messages from Zone 01 as they belong to di!erent zones. In Figure 3.4, we also observe
that two storage entities are deployed in a cloud environment, and they are not inherently
associated with a specific physical zone. However, they can be configured to belong to
one or more zones. Specifically, one storage entity subscribes to ext/temp/c and receives
messages from both Zone 01 and Zone 02, while another entity subscribes to int/temp/c
but is limited to Zone 02. With this setup, routers direct messages outside of zones only
towards links that lead to the target entities matching both the topic and location, as we
can see from the arrows depicted in the figure.
In Figure 3.4, we present device topics from the developer’s perspective. Conversely,
Figure 3.5 displays the same image, revealing the actual hidden topic crucial for zone
division. To enhance clarity, we employ the identifiers zone01 and zone02 for the two
zones, avoiding the use of visually complex encoded information.



3| Problem Statement And Design Space 35

Zone 01

Zone 02

Cloud
Other Zones

PUB 3
int/temp/c

PUB 1
ext/temp/c

PUB 2
ext/temp/c

PUB 1
int/temp/c

SUB 2
int/temp/c

SUB 3
ext/temp/c

SUB 1
int/temp/c

STORAGE 1
int/temp/c

STORAGE 2
ext/temp/c
(all zones)

STORAGE 3
int/temp/c
(Zone 02)

Figure 3.4: Zenoh location awareness example.

Zone 01

Zone 02

Cloud
Other Zones

PUB 3
$zla_zone02/
int/temp/c

PUB 1
$zla_zone01/
ext/temp/c

PUB 2
$zla_zone02/
ext/temp/c

PUB 1
$zla_zone01/
int/temp/c

SUB 2
$zla_zone02/
int/temp/c

SUB 3
$zla_zone02/
ext/temp/c

SUB 1
$zla_zone01/
int/temp/c

STORAGE 1
$zla_zone01/
int/temp/c

STORAGE 2
*/ext/temp/c

(all zones)

STORAGE 3
$zla_zone02/
int/temp/c
(Zone 02)

Figure 3.5: Zenoh location awareness example with explicit key.





37

4| Design

In this chapter we focus on the regular version of Zenoh. We center our attention on the
specific modules that require modifications to enable the implementation of a location-
aware version. Furthermore, we also direct our attention towards the creation of modules
that serve as support libraries and/or introduce new API functionality.
In Section 4.1 we introduce some concepts linked to our solution while in Section 4.2 we
go deeper into our new Zenoh APIs and changes done in internals modules.

4.1. Overview

Before we delve into the modifications to be applied to Zenoh, it is appropriate to introduce
some features that entities within the network can have. Specifically, we focus on the
properties of a publisher and a subscriber in a location-aware context, how they can be
regarded in space, and how they obtain geographic coordinates to determine their position.
Primarily, Zenoh must work in both the location-aware version and the regular version.
Consequently, in our design, we employ the term whole network to indicate an entity
that sends/receives messages solely based on the topic, without any spatial information.
Conversely, we employ the term area to denote an entity that exchanges messages while
considering both the topic and location information.
In terms of location, we recognize two types of positional information:

• Physical location: It represents a device situated within a specific area, and its
location data can be sourced from GPS or other positioning systems, with its value
subject to change over time.

• Virtual location: It represents an entity or device that does not occupy a specific
physical area, as seen in a cloud deployment of a data recorder in Figure 3.4 of the
previous chapter. In the case of a virtually located entity, its location is determined
by software configuration, meaning the entity’s location is hardcoded and may not
correspond to the real one.

In these scenarios, a publisher, as summarized in Table 4.1, always behaves in the same



38 4| Design

Physical Virtual

Whole Network
A publisher, corresponding to a point in space, always includes its
location when generating a message. It is the positional value that
varies and determines the subscribers to which the message is
directed to.Area

Table 4.1: Publisher characteristics.

Physical Virtual

Whole Network No changes w.r.t. regular version.

Area Subscribers communicate their
real position at subscription
time, and update it if neces-
sary over time. They define
the coverage area in terms of
shape and value at configura-
tion time.

Subscribers define both posi-
tion, and coverage area def-
inition at configuration time.
There is no changes over time.

Table 4.2: Subscriber characteristics.

way, regardless of whether its location is physical or virtual. Furthermore, in spatial terms,
we can define a published message as corresponding to a point in space, even though the
same point may belong to di!erent area definitions.
On the other hand, a subscriber can receive messages generated from di!erent points. In
fact, as summarized in Table 4.2, we must consider not only the area it belongs to, but
also how we wish to define the area data should be received from. For this purpose, a
subscriber located at a physical location can define its position, for example, via GPS,
and be configured to cover a surface, such as a generic flat or circular surface. It can
alternatively be set up in an ego-centric manner, delineating the space around itself and
maintaining a consistent area definition relative to the subscriber’s position, even when
in motion.
In the case of a virtual location, the concept remains similar; the position is defined at
the configuration level, such as the listening range. The main di!erence concerns the
static nature of the position over time, since a non-real device cannot possess the ability
of physical movement.



4| Design 39

4.2. Internals Design

We explore the components and libraries that require modification for the implementa-
tion of location awareness in Zenoh. Our primary emphasis is on changes to component
structures and user-accessible APIs, while the finer implementation details are reserved
for Chapter 6.
Before introducing the new location-aware API, it is crucial to clarify the concept of a
"topic" in Zenoh. Zenoh employs a key expression, abbreviated as "key_expr," to repre-
sent a topic and a "selector" to identify the topic in query operations.

4.2.1. Zenoh Location-aware API

The Zenoh APIs serve as the user interfaces, primarily tailored for developers. To intro-
duce additional features, it is necessary to expand the existing interfaces, enabling the
management of location-related information. Zenoh APIs are available in Rust, C, and
Python, as well as through a REST interface that can be seamlessly integrated with either
a router or a peer. In this section, we use Python to explain the API because it is more
readily comprehensible but the result is the same for the other languages, while we discuss
the REST API in Section 4.2.2.

In Section 4.1, we distinguish between physical and virtual locations depending on the
type of device running the software. In practice, both types require obtaining coordinates
regarding their position, whether through a GPS reading or a static value. Therefore, the
new APIs necessitate a corresponding mechanism to facilitate this.
The optimal approach is to o!er a function for registering a callback, granting developers
the flexibility to implement their own custom function. The declare_position_handler
function requires two parameters: a lifetime value that signifies the duration during which
Zenoh considers the last location value as valid, and a handler, which serves as the callback
function Zenoh invokes whenever it needs a new location value. Zenoh invokes the handler
when there are no location values available or whenever it requires location data but the
lifetime of the previous one is expired.

def declare_position_handler(lifetime, handler)

Moreover, lifetimes may evolve over time. Therefore, we introduce an additional API that
allows for adjusting its value without the need to modify the position handler:

def set_position_lifetime(lifetime)

With the exception of the two new APIs, there is no need to introduce additional ones; it



40 4| Design

is su"cient to modify the existing ones. Zenoh provides several APIs to developers, with
the most important ones relating to the publisher, subscriber, get, and queryable devices
all contained in Zenoh Session class.
Regarding a publisher, we add only a precision parameter. This parameter instructs
Zenoh on whether to treat the publisher as a point (the default setting) or to apply some
approximation that better fits a di!erent type of encoding method. In the publishing
API, there is no need for additional changes, as the position handler already provides the
necessary location data.

def put(key: IntoKeyExpr,
value: IntoValue,
precision: Precision = Precision.POINT,
encoding=None,
priority: Priority = None,
congestion_control: CongestionControl = None,
sample_kind: SampleKind = None) -> Any

def declare_publisher(key: IntoKeyExpr,
precision: Precision = Precision.POINT,
priority: Priority = None,
congestion_control: CongestionControl = None) -> Publisher

The put API transmits a message onto the Zenoh network, while the declare_publisher
API registers a publisher device within Zenoh’s network for subsequent publishing activ-
ities.

Conversely, subscribe, query, and get operations demand not just the position but also
a target area, which can be defined through various methods. To accommodate this,
we are incorporating three optional parameters into all four APIs: location_shape, an
enumerated value for specifying the shape to utilize, shape_data, which carries the data
required for defining the area, and precision parameter, which informs Zenoh whether
to interpret the shape definition as punctual or approximate it. It’s important to note
that all the parameters are optional, and the default values disable the location-aware
functionality.

def declare_subscriber(key: IntoKeyExpr,
handler: IntoHandler[Sample, Any, Any],
location_shape: Shape = Shape.NONE,
shape_data: Dict = None,



4| Design 41

precision: Precision = Precision.POINT,
reliability: Reliability = None) -> Subscriber

def declare_pull_subscriber(key: IntoKeyExpr,
handler: IntoHandler[Sample, Any, Any],
location_shape: Shape = Shape.NONE,
shape_data: Dict = None,
precision: Precision = Precision.POINT,
reliability: Reliability = None) -> PullSubscriber

def get(selector: IntoSelector,
handler: IntoHandler[Reply, Any, Receiver],
location_shape: Shape = Shape.NONE,
shape_data: Dict = None,
precision: Precision = Precision.POINT,
consolidation: QueryConsolidation = None,
target: QueryTarget = None,
value: IntoValue = None) -> Receiver

def declare_queryable(key: IntoKeyExpr,
handler: IntoHandler[Query, Any, Any],
location_shape: Shape = Shape.NONE,
shape_data: Dict = None,
precision: Precision = Precision.POINT,
complete: bool = None) -> Queryable

Zenoh also provides other APIs that we do not mention since they do not impact location
awareness functions and, therefore, remain unchanged.

Example
Let us recreate the example illustrated in Figure 4.1, where we establish two subscribers
and a publisher. The first subscriber is set to subscribe to a rectangular area indicated in
blue, while the second subscriber subscribes to a circular area centered on the subscriber’s
position, marked in green. The two areas overlap, and the publisher generates messages
within the intersection of the two. In this setup, both subscribers receive the published
message.



42 4| Design

Figure 4.1: Zenoh location-aware intersection example.

We report the code snippets of the publisher and the two subscriber using the new
location-aware version of Zenoh python API.

Publisher Code

1 import numpy as np
2 import zenoh
3 from zenoh import Reliability, Sample
4 import location_zenoh
5 from location_zenoh import Coordinates, Shape, Precision
6

7 def position_callback():
8 return Coordinates(46.52275, 14.01002)
9

10 zenoh.init_logger()
11 #Open new Location-aware Zenoh session

12 session = location_zenoh.open(conf)
13 #Declare the handler with infinity position lifetime

14 session.declare_position_handler(numpy.infty, position_callback)
15 #Declare a publisher to 'temperature/external' topic

16 pub = session.declare_publisher("temperature/external")
17 while True: #Publish a value

18 pub.put(json.dump({"temp_c": 12.5}))



4| Design 43

Consider, for instance, line 14 where we introduce the declare_position_handler API.
Within this handler, the position lifetime is set to numpy.infty, indicating that the spec-
ified position remains valid indefinitely. Subsequently, we specify the callback function’s
name from which the location data is retrieved. We declare the actual callback function
on lines 7→8, merely returning a Coordinate object representing a point in space. Lastly,
on line 16, we declare the publisher. It is noteworthy that the provided topic lacks any
information about the location, as the responsibility for handling all location data lies
with the API rather than the developer.
In the next code snippet, we declare a subscriber using a rectangular area. On lines
17→ 20, we show the new API signature. The topic lacks any location information since
the position callback is registered some line above, as for the publisher. However, the
declare_subscriber API includes the area description. We can observe the utilization
of GEOGRAPHIC_RANGE to specify the rectangular area, defining the limits in terms of min-
imum and maximum latitude and longitude within the shape_data parameter.

Subscriber Code - Rectangular Area

1 #Same imports as publisher

2

3 def position_callback():
4 return Coordinates(45.774260, 12.608570)
5

6 #Print the message payload once received

7 def listener(sample: Sample):
8 print(sample.payload.decode("utf-8"))
9

10 zenoh.init_logger()
11 #Open new Location-aware Zenoh session

12 session = location_zenoh.open()
13 #Declare the handler with infinity position lifetime

14 session.declare_position_handler(numpy.infty, position_callback)
15 #Declare a subscriber for 'temperature/external' topic with a square area of

16 #interest defined in shape_data

17 subscriber = session.declare_subscriber("temperature/external",
18 listener, location_shape= Shape.GEOGRAPHIC_RANGE,
19 shape_data={ "min_lat" : 45.0, "min_long" : 11.0,
20 "max_lat": 47.0, "max_long": 15.2 })



44 4| Design

Furthermore, we present an alternative area description in the subsequent code snippet,
employing an ego-centric definition. On lines 17→19, we declare a subscriber tuned to a cir-
cular area using a CIRCLE shape. Notably, the circle radius is specified via the shape_data
parameter, with the center of the circumference determined by the subscriber’s own po-
sition. The subscriber position is obtained through the standard position_callback
function. Diverging from the earlier snippets, this subscriber accommodates mobility. On
line 14, we set the position lifetime to 180 seconds, indicating that the position is valid
for only that duration once retrieved. Upon the expiration of the position lifetime, the
API automatically requests a position update and adjusts the subscription to align with
the new data if necessary.

Subscriber Code - Circular Area

1 #Same imports as publisher

2

3 def position_callback():
4 return Coordinates(48.0, 14.0)
5

6 #Print the message payload once received

7 def listener(sample: Sample):
8 print(sample.payload.decode("utf-8"))
9

10 zenoh.init_logger()
11 #Open new Location-aware Zenoh session

12 session = location_zenoh.open()
13 #Declare the handler with 3 minutes position lifetime

14 session.declare_position_handler(180, position_callback)
15 #Declare a subscriber for 'temperature/external' topic with a circular

16 # area of interest centered in subscriber location and having r=2

17 subscriber = session.declare_subscriber("temperature/external",
18 listener, location_shape= Shape.CIRCLE,
19 shape_data={ "r" : 2.0 })

For instance, modifying the publisher coordinates to (45.2, 13.0), the publisher remains
within the rectangular area but no longer to the circular region. Consequently, only the
rectangular area subscriber will receive the published messages. We have omitted the
entire code, as the only alteration is in the 8th line of the publisher code, changing it from
return Coordinates(46.52275, 14.01002) to return Coordinates(45.2, 13.0).



4| Design 45

4.2.2. REST API

The Zenoh REST API o!ers a convenient and web-friendly interface for interacting with
Zenoh’s data distribution and storage capabilities. It always uses the same url schema
https://host:rest_port/key_expr and it o!ers 3 methods:

• GET: It binds to the get API and the key_expr represents the selector for the
operation. If configured with Long-Lived SSE1 it acts as declare_subscriber.

• PUT: It binds to the put operation, it also requires a body that is the message to
publish.

• DELETE: It binds the delete function, which cancels a put operation.

To align the REST APIs with the same parameters used in Python and RUST, we choose
to employ the query string, a standard HTTP method for including additional parameters
in a URL.
Therefore, we introduce the query parameters lat and long. However, the GET method
necessitates additional information for area definition, which leads us to introduce the
shape parameter, responsible for shaping the area, along with a set of parameters tailored
to the chosen shape, and the precision parameter to tell the REST engine if whether to
approximate the location point or not.
As example, to invoke the GET method with a circular area of a 10-meter radius centered
on the caller’s position, we formulate the following request:

https://host:rest_port/key_expr?lat=10.0&long=20.0&shape=circle&r=10

1https://zenoh.io/docs/apis/rest/#long-lived-sse-get

https://zenoh.io/docs/apis/rest/#long-lived-sse-get




47

5| Embedding Location

In this chapter, we direct our attention towards the techniques we employ for encoding
spatial information within the location key. In Section 5.1 we provide an overview of the
basic method, involving the use of a base64-encoded string representing an object. Moving
on to Section 5.2, we explore the Military Grid Reference System (MGRS), delving into its
features and explaining its role as an encoding system. Lastly, in Section 5.3 we address
Bloom Filters, highlighting their characteristics and discussing their utility in describing
spatial information.

5.1. Base64

Base64 encoding is a technique that converts binary data into ASCII text format, making
it suitable for various applications, including the representation of complex text as a
concise string for easy transfer.
We leverage JSON as a standard format to organize information, ensuring compatibility
across di!erent programming languages and libraries. In practice, the data the developer
configures through the Zenoh APIs, such as the position and shape of the area of interest,
are inserted into a JSON object. For example, we describe a subscriber’s circular area
centered in (15.5, 20.1) having a 10.3m radius with the object:

{
"r": 10.3,
"c": {

"lat": 15.5,
"long": 20.1

}
}

and a publisher point simply as:

{
"lat": 16.0,



48 5| Embedding Location

"long": 21,5
}

Once we have the object describing our information of interest, we serialize it. JSON
serialization is the operation that transforms the native data structure into a JSON-
formatted string. With the JSON string, we can later deserialize it into the original data
structure. For example, the circular area we describe above, once serialized, becomes:

{\"r\":10.3,\"c\":{\"lat\":15.5,\"long\":20.1}}

As a final step, we employ Base64 encoding. This final process converts the JSON string
into a di!erent, more compact string that represents the same object. It utilizes only
characters that can be accommodated within a topic, as certain characters in the original
JSON string might not be accepted. The Base64 encoded version of the example results
in the string:

e1wiclwiOjEwLjMsXCJjXCI6e1wibGF0XCI6MTUuNSxcImxvbmdcIjoyMC4xfX0=

This representation enables us to encapsulate any desired shape in a single string. On
the other hand, routers must know which object is represented to decode it correctly. In
Chapter 6, we explain how our solution tells routers the correct object to decode both the
Base64 string and the JSON string, which is represented in the topic key and not inside
the Base64 encoding.

5.2. MGRS

We propose another encoding method for the location-aware version of Zenoh. The Mil-
itary Grid Reference System, shortly MGRS, is a geocoordinate system used to specify
locations on the Earth’s surface. It is commonly employed in military applications, but
it is also used in various civilian contexts. MGRS is based on the Universal Transverse
Mercator (UTM) coordinate system [11].
Let us see how MGRS system work with the example1 in Figure 5.1:

• Grid zones: The world is divided into a series of 6-degree longitudinal bands, each
labeled with a letter from "C" to "X," excluding the letters "I" and "O". These
bands are called grid zones.

• 100000-Meter Squares: Each grid zone is further divided into 100000-meter
squares. These squares are identified by a combination of numbers and letters,
providing a unique reference within the grid zone.

1https://www.maptools.com/tutorials/mgrs/quick_guide

https://www.maptools.com/tutorials/mgrs/quick_guide


5| Embedding Location 49

Figure 5.1: MGRS Example.

• Easting and northing: The location is specified using easting (horizontal) and
northing (vertical) values within the 100000-meter square. Easting values are mea-
sured from the left edge, and northing values are measured from the bottom edge.

A complete MGRS coordinate includes the grid zone designation, the 100000-meter square
identifier, and the easting and northing values. For example, a full MGRS coordinate
might look like "10SGJ0683244683" where "10S" is the grid zone, "GJ" is the 100000-
meter square, and "0683244683" represents the easting and northing values. This last
value is even because the initial half, "06832," signifies the eastern value, while the latter
half, "44683," denotes the northern value.
Furthermore, with MGRS, defining broader or more restricted areas is straightforward.

By taking the MGRS Coordinate, it is su"cient to remove or add pairs of values to expand
or reduce the area dimension. Let us consider an example:

• "10S GJ 06832 44683": 1m2 area

• "10S GJ 0683 4468": 10m2 area

• "10S GJ 068 446": 100m2 area

• "10S GJ 06 44": 1km2 area

• "10S GJ 0 4": 10km2 area



50 5| Embedding Location

• "10S GJ": 100km2 area

• "10S": Grid Zone Junction (GZJ), 6→ ↑ 8→

Practically, we can use the MGRS coordinate system for managing location information
in the location-aware version of Zenoh. While we sacrifice precision and flexibility in
describing areas compared to Base64 encoding, we gain the advantage of a shorter string,
limited to a maximum of 15 characters. Additionally, the MGRS system o!ers a simpler
way to facilitate matching operations.

In implementing MGRS in the location-aware version of Zenoh, we opt to encode a pub-
lisher consistently with the maximum precision it provides, as we always define a publisher
as a point. Conversely, we allow the developer to select the preferred precision for sub-
scribers, enabling them to describe either a precise location or a broader area. In Figure 5.2
we show how a match between a publisher with a subscriber is computed, representing
both a successful and unsuccessful match case. The steps are:

1. Verify the length of both the publisher and subscriber MGRS strings to determine
if they are even or odd. If one string has an even length and the other has an odd
length, it indicates a mismatch, and we conclude the process.

2. Compare the first subset of characters:

• If the length is even, we check the first 4 characters

• If the length is odd, we check the first 5 characters. For example in Figure 5.2a
we can see how the two groups 10S and GJ belong to both publisher and
subscriber coordinates.

If at least one character is di!erent as shown in Figure 5.2b, the publisher does not
match the subscriber and we finish. In the figure, we can see that the two grid zones
10S and 10P are di!erent.

3. If the previous point does not exit, as the example in Figure 5.2a, we take the
second subset representing easting and northing value. We also compute the shortest
representation between the subscriber and publisher coordinates.

4. We split the two representations in half to get the easting and northing values
separately and then we compare each character until:

• All the values of the shortest string match the other, therefore, the two locations
match.

• One value is di!erent, therefore, the two locations do not match.



5| Embedding Location 51

10S GJ 0683244683

10S GJ 068446

Publisher

Subscriber

{
{

{

{ {

{

06832  44683

068  446
Match!

(a) Matching Location.

10P GJ 0683244683

10S GJ 068446

Publisher

Subscriber
{

{
{

{ {
{

No Match!X

(b) Not Matching Location.

Figure 5.2: MGRS matching example.

From Figure 5.2a, it is also evident that the last two digits of the easting and northing
values in the publisher’s coordinates are ignored since the subscriber has already found a
match.

5.3. Bloom Filters

A Bloom filter is a space-e"cient probabilistic data structure used to test whether an
element is a member of a set. It works by using hash functions to map elements into a
fixed-size array of bits. Due to its probabilistic nature, there is a chance of encountering
false positives but it never yields false negatives. This property makes it suitable for use in
a Pub/Sub system. In fact, subscribers can receive at most messages that do not belong
to them, but they will never miss messages that belong to them, thus not impacting the
system’s functionality.
To work with Bloom filters we need to define some parameters:

• Expected number of elements of the domain n: the domain represents all the po-
tential elements the set can include.

• Length of the bit-array m: the overall size of the fixed-size array of bits.

• Number of hash functions k: to enhance precision, we require the application of



52 5| Embedding Location

more than one hash function to our domain elements.

• Probability of false positive p: it represents the probability that an element will be
incorrectly identified as a member of a set even if it is not.

Since each parameter depends on the others, it is not possible to arbitrarily set them
all. For example, as the number of elements in the domain increases and the desired
probability of false positives decreases, the length of the bit array will also increase. In
Equation 5.1, we see how to calculate the optimal length of the bit-array m given the
number of elements in the domain n and the desired probability of false positives p.

m = →n · ln(p)
(ln(2))2

(5.1)

Also the ideal number of hash function k depends on the other parameters. In Equation 5.2
we report the formula to compute k given the length of the bit-array m and the number
of elements in the domain n.

k =
⌈
m

n
· ln(2)

⌉
(5.2)

Once the number of elements in the domain (n) and the desired probability of false posi-
tives (p) are configured, the remaining parameters are computed, allowing us to construct
the actual filter.

0    1  2    3  4    5  6    7  8    9

0 0 0 0 0 0 0 0 0 0

0    1  2    3  4    5  6    7  8    9

1 0 1 1 0 1 0 0 1 0

Empty Bit-Array

h1(”1-1”) = 3
h2(”1-1”) = 0

h3(”1-1”) = 8

h1(”3-5”) = 0
h2(”3-5”) = 2

h3(”3-5”) = 5

0    1  2    3  4    5  6    7  8    9

1 0 1 1 0 1 0 0 1 0 Result

First element: “1-1” Second element: “3-5”

Figure 5.3: Insertion on bit-array.



5| Embedding Location 53

In Figure 5.3, we provide a visual representation of a Bloom Filter with a 10-bit length
array and 3 hash functions. Initially, the bit-array is initialized with all values set to 0.
Subsequently, for every element within the domain that we intend to insert into the filter,
we calculate the corresponding hash functions. The outcome of each hash function deter-
mines the index in the bit-array to which the element is mapped, and the corresponding
bit is set to 1. If a bit at a computed index is already set to 1, it remains unchanged.
This process is repeated for each hash function and element of the domain to add to the
set.
Once we have the resulting bit-array with both 0s and 1s, representing the Bloom Filter,

we can see how the querying process works.
We show, using the same example, the process in Figure 5.4. To verify whether an el-
ement belongs to the set described by the filter, it is enough to apply the same hash
function to the element. If the bits at the positions indicated by the resulting indexes
from the hash function are set to 1, the element belongs to the set; otherwise, it does
not. During element queries, false positives may arise. Consider, for instance, the element
"1-4" as depicted in Figure 5.4. The outcomes of the hash functions yield three indexes
corresponding to all 1 bits. In this scenario, there may not be an element directly mapped
to those indexes. However, the membership determination relies on the combination of
various bits set by di!erent elements.

0    1  2    3  4    5  6    7  8    9

1 0 1 1 0 1 0 0 1 0 Filter

Testing element: “1-5”
h3(”1-5”) = 9

h2(”1-5”) = 4
h1(”1-5”) = 0

Testing element: “3-5”
h3(”3-5”) = 5

h2(”3-5”) = 2
h1(”3-5”) = 0

X X

h3(”1-4”) = 5

h2(”1-4”) = 8
h1(”1-4”) = 3

False positive element: “1-4”

Figure 5.4: Query on Bloom filter.



54 5| Embedding Location

0-5 1-5 2-5 3-5 4-5 5-5 6-5 7-5 8-5 9-5

0-4 1-4 2-4 3-4 4-4 5-4 6-4 7-4 8-4 9-4

0-3 1-3 2-3 3-3 4-3 5-3 6-3 7-3 8-3 9-3

0-2 1-2 2-2 3-2 4-2 5-2 6-2 7-2 8-2 9-2

0-1 1-1 2-1 3-1 4-1 5-1 6-1 7-1 8-1 9-1

0-0 1-0 2-0 3-0 4-0 5-0 6-0 7-0 8-0 9-0

0    1  2    3  4    5  6    7  8    9

5

4

3

2

1

0

Figure 5.5: Bloom filter domain definition.

To employ Bloom filters as a technique for encoding spatial data, we require an alternative
method for conducting queries. The querying process occurs on Zenoh routers based on
the encoded information in the message topic while data definition, and so the encoding
process, is up to the clients.
Firstly, it is essential to establish the domain, and we choose to utilize an arbitrary grid
defined by the developer. In Figure 5.5, we provide an example of a domain grid with
dimensions 10↑ 6, resulting in a total of 60 domain elements. Subsequently, we construct
the element identifier as the combination of the row and column indices. These unique
identifiers are the elements that we insert into the filter.
Once we define the domain across all the clients, we can map our publishers and sub-

scribers within the domain. We map the publisher to the grid unit in which the publishing
point belongs. A publisher always corresponds to a single domain element since, as pre-
viously mentioned, we treat it as a point in space. Instead, we map subscribers as the
minimum subset of the domain elements that entirely cover the area the subscriber de-
fines.
In Figure 5.6 we see a visual example. The publisher, which is the red cross, corre-
sponds to the {7 → 4} element in the Bloom Filter domain. The subscriber, which
is more extensive, covering a larger area than a single unit, is mapped to the subset
{4→ 2, 5→ 2, 4→ 3, 5→ 3, 4→ 4, 5→ 4}, which is the minimum number of domain units to



5| Embedding Location 55

0    1  2    3  4    5  6    7  8    9

5

4

3

2

1

0

Subscriber

PublisherX

X

Real 

representation

Bloom Filter

representation

Subscriber

Publisher

Figure 5.6: Example of Bloom filter domain representation.

completely contain the real subscriber definition.
Now, we can construct the filter. We opted to construct it with a length equal to

the nearest integer multiple of 32 greater than the calculated ideal number of bits using
Equation 5.1. We make this decision to achieve a representation that is easy to man-
age once encoded. The developer chooses the false probability value p, and we compute
the number of hash functions k using Equation 5.2. The Bloom Filter must include the
domain elements that characterize the subscriber, as we need to test the membership of
published messages to a subscriber, not the other way around. The subscriber’s location
key contains the filter, the publisher key should contain the element to test and both
these information within the hash functions definition should be distributed to routers for
membership testing.
Our goal is to minimize routing overhead, and including all this information within the
topic location key leads to a huge message. Therefore, we choose to conduct membership
testing in a slightly di!erent manner. Referring to Figure 5.7, we match a publisher with
subscribers on the router side by executing the bitwise operation, a lightweight operation
involving a bit-a-bit AND. In simpler terms, we verify the match between the 1 bits of
the subscriber and those of the publisher. To accomplish this, we generate a filter-like
representation for the publisher, which serves as the element for membership testing. The
publisher’s filter is identical to that of a subscriber, with the only distinction being the



56 5| Embedding Location

0    1  2    3  4    5  6    7  8    9

1 0 1 1 0 1 0 0 1 0 Subscriber Filter

0    1  2    3  4    5  6    7  8    9

1 0 1 0 0 1 0 0 0 0
Publisher

Location Filter

0    1  2    3  4    5  6    7  8    9

1 0 0 0 1 0 0 0 0 1 Publisher

Location Filter

X X

Match!

No Match!

Figure 5.7: Query on Bloom filter in Zenoh router.

position of the bit set to 1, which exclusively represents the unique domain element map-
ping the publisher.
Once we possess the subscriber filter and the filter-like representation of the publisher, we
can execute the match using the bitwise operator. The forthcoming example, illustrating
how we carry out the match, utilizes an 8-bit representation instead of 32: consider the
integer 90 with a binary representation of 01011010, representing our subscriber filter. To
represent a publisher, we can use the number 18, with a binary representation of 00010010.
The bitwise operation & works as follows:

01011010 & 00010010 = 00010010

in decimal representation

90 & 18 = 18

Finally, as transmitting either the binary or integer representation may lead to a long
encoding, we choose to utilize the hexadecimal representation, which is shorter than the
decimal one but remains easy to manage. In practice, to integrate the Bloom Filter into
the location key, we follow these steps on the client side:

1. Obtain the binary representation of the filter.



5| Embedding Location 57

2. Divide the filter into sub-arrays of 32 bits in length.

3. Represent each sub-array in base 16 for a more concise representation.

4. Combine the base 16 values into a single string, constituting our encoded location
within the location key.

On the router side, we simply perform the bitwise operation on each hexadecimal value
between the subscriber filter and the publisher filter. A match is achieved if and only if

<subscriber hex> & <publisher hex> = <publisher hex>

for each hexadecimal pair of values.





59

6| Implementation Highlights

In this chapter, we focus on the implementation of the location-aware version of Zenoh.
We deal with the important choices we make during the implementation starting from the
new key expression, the wrapper we build around the original API, to the new module
in the core of Zenoh. In Section 6.1 we provide an overview of the internal structure of
Zenoh and the new library we introduce. In Section 6.2 we introduce the new wildcard
and the relative matching in the router component, and in Section 6.3 we present the new
API for Zenoh with location-awareness along with the management of mobility cases.

6.1. Zenoh Internals

Zenoh Internals represent the core of Zenoh, which is the set of libraries and modules
necessary for the operation of the protocol itself. In Figure 6.1, we represent the main
classes that compose it, highlighting the modules we edit and add to implement the
location-aware functionality. As our solution relies on expanding the primary expression
language by introducing the location key, adjustments need to be made in the keyexpr
module. Within this module, we pinpoint the stage where Zenoh identifies the $ symbol
and extends the recognition process to accommodate not only the $* wildcard but also
the newly introduced $zla_ prefix.
To enhance code decoupling, rather than incorporating new matching functions directly
into the key expression module, we opt to create a separate library named location-zenoh.
This library exposes a boolean function responsible for handling the matching of the lo-
cation key and representing the entry point. Within the location-zenoh library, we
incorporate the functionality discussed in Chapter 5 to manage encoding techniques. Fur-
thermore, the library provides various recognizers to determine the encoding technique
a message uses and it includes the logic to parse the entire key based on the recognized
technique, as we explain in the subsequent section.
A component of Zenoh internals is the rest plugin library, which provides the encoder and
decoder for interfacing with the Zenoh network via a JSON REST interface. We modify
the plugin to incorporate location-aware parameters, o!ering identical functionalities to



60 6| Implementation Highlights

those of the API, as detailed in Section 4.2.1, and extend these features to the REST
interface. The REST plugin imports and utilizes the location-zenoh library.

Zenoh Internals

commons

bu!ers
cfg-properties
codec
collections
con"g
core
crypto
keyexpr
macros
protocol
result
shm
sync
util

ci

nosyd-check

io

link
link-commons
links
transport

plugin

rest

zenoh

zenohd

location

Untouched

Edited

Added

Figure 6.1: Zenoh internals structure.

6.2. Location Key

In previous chapters, we introduced the new wildcard to extend the Zenoh key expression
language, forming the location key. We also discussed encoding methods that rely on
the location key. Let us now delve into the specifics of this new wildcard, examining its
appearance and the information it contains.
The specific structure of the key depends on di!erent aspects:

• Device type: The key undergoes changes based on whether the device functions
as a publisher, a subscriber, a queryable entity, or a pull subscriber.

• Encoding method: A crucial aspect of the key is the flag indicating the encoding
method the developer chooses for the respective implementation.

• Shape of the area: In Base64 encoding, the shape also plays a role. This is
because it informs routers on how to decode the JSON object.

Before delving into the explanation of all possible types of key structures, we present in
Figure 6.2 the general format of the location key. An initial fixed prefix $zla_ informs
Zenoh that the wildcard is the location key and should be handled di!erently w.r.t. a
normal topic level. Following the prefix is a flags area, comprising certain characters



6| Implementation Highlights 61

$zla_XXXXXX_YYYYYY} } }

Pre!x Flags
Encoded 
Location

Figure 6.2: General structure of the Location Key.

separated by the underscore symbol, which describes the device type, encoding method,
and/or shape when necessary. Lastly, the last segment of the key carries the actual
encoding of the location information, as discussed in Chapter 5.

6.2.1. Base64 Key

The Base64 encoding method is a precise approach in location definition. Consequently,
the location key must convey information about both the device type and the shape
encoded in the key. We use the string YYYYYY as a placeholder to indicate the location
data encoding.
For a publisher, representing a point, the generated key takes the form:

$zla_p_YYYYYY

Here, the letter p in the flags area denotes the device type as a publisher.
The location key associated with other device types, which describe an extended area,
is somewhat more intricate. Let us introduce a variable x to represent the shape. This
variable can take the value 1 to describe a rectangular range using the minimum and
maximum latitude and longitude or the value 2 to depict a circular area centered on the
device position. In this case, for each device type, we define the following keys based on
the value of x:

• Subscriber: $zla_s_x_YYYYYY

• Pull Subscriber: $zla_ps_x_YYYYYY

• Queryable: $zla_q_x_YYYYYY

• Get Operation: $zla_g_x_YYYYYY

On the router side, the matching process is relatively straightforward. Upon recognizing
the $zla_ prefix in the topic, the key is directed to the location-aware matching func-
tion. This function serves as the entry point for the location-zenoh library, which we
integrate into Zenoh Internals, while the other levels of the topic continue to be matched
through Zenoh’s normal flow. The location-aware matching function operates as a boolean
function, o!ering only two possible outcomes:



62 6| Implementation Highlights

• Match: true

• Mismatch: false

The function initiates by removing the $zla_ prefix from the key. After identifying one
of the potential values in the device flag, it then splits the remaining part into segments
using the underscore as a separator. Following this, it examines the first flag to identify
the device submitting the request.
Given that potential matches can occur between a publisher and a subscriber/pull sub-
scriber or between a get operation and a queryable, we categorize these devices into two
groups. Subsequently, the function forwards the shape flag and the encoded data to the
decoder module, which is responsible for returning the JSON object. It accomplishes this
by first decoding the base64 string and then converting the stringified JSON into the
corresponding object based on the shape flag. In the case of a publisher, only the base64
string is required since the resulting object is always a point.
Ultimately, the actual match is conducted. In the case of a publisher with a subscriber,
it verifies whether the coordinates of the points belong to the subscriber’s area, including
the perimeter. The match between a get operation and a queryable checks if at least one
point exists between the two defined areas. At conclusion, the location-aware function
conveys the result back to the Zenoh flow, which compares the location key match result
with the one the other topic levels provide. The match between two devices using the
Base64 encoding technique is performed in O(n + m) where n is the complexity of the
base64 decoder and m is the one of the JSON parser.

6.2.2. MGRS Key

The MGRS encoding method does not di!erentiate between publishers and subscribers.
An MGRS coordinate consistently follows the same format. Matching occurs when a
wider area intersects another one, it relies on the concept of containment as explained in
Section 5.2.
The MGRS location key comprises the prefix, the flag defining the encoding, and the
coordinates, resulting in the format:

$zla_m_YYYYYY

where, as usual, YYYYYY is the coordinate placeholder.

On the router side, the matching process operates similarly to the Base64 method. Ini-
tially, Zenoh identifies the location key through the $zla_ prefix. It then directs the
location key to the location-zenoh library using the location-aware matching function,



6| Implementation Highlights 63

which removes the prefix. The function subsequently recognizes the letter m, which doesn’t
signify any device type but indicates MGRS encoding. The function splits the key us-
ing the underscore as a separator and forwards the MGRS coordinates to the respective
module. The MGRS matching function is not so straightforward. In fact, it is necessary
to proceed through levels within the coordinates, starting from the Grid Zones up to the
easting and northing values, if present. Let us examine the function we o!er in Rust, as
Zenoh Internals are written in the Rust language.

1 pub fn mgrs_match(d1: &[u8], d2: &[u8]) -> bool {
2 if d1[0] != d2[0] || d1[1] != d2[1] { return false; }
3 let mut next_i = 2;
4 if d1.len()%2!=0 && d2.len()%2!=0 {
5 if d1[2] != d2[2] { return false; }
6 next_i = 3;
7 }
8 if d1.len() == next_i || d2.len() == next_i { return true; }
9 if d1[next_i] != d2[next_i] || d1[next_i+1] != d2[next_i+1] {

10 return false;
11 }
12 next_i = next_i + 2;
13 if d1.len() == next_i || d2.len() == next_i { return true; }
14 let d1_then: &[u8] = &d1[next_i..];
15 let d2_then: &[u8] = &d2[next_i..];
16 let len1 = d1_then.len();
17 let len2 = d2_then.len();
18 let mut for_len = len1/2;
19 if len1 >= len2 {
20 for_len = len2/2;
21 }
22 for i in 0..=for_len-1 {
23 if d1_then[i] != d2_then[i] ||
24 d1_then[i+(len1/2)] != d2_then[i+(len2/2)] {
25 return false;
26 }
27 }
28 return true;
29 }



64 6| Implementation Highlights

The function receives two MGRS coordinates, d1 and d2, as input parameters, regardless
of the device type. The crucial step in the function involves verifying the alignment of
various components:

• Line 2: the function checks the first two characters that define the grid zone. Since
an MGRS coordinate must contain at least the grid zone, its existence is guaranteed.
In cases where the grid zone is three characters long, making the full MGRS length
odd, the function performs a check on line 4. If true, it verifies that the third
character pairs align, advancing the cursor (next_i) one step ahead. If one of the
coordinates only contains the grid zone, they match, and the function returns true;
otherwise, it proceeds.

• Line 9: the function checks the two symbols identifying the 1000000-meter square
precision. Similar to the previous check, if these symbols di!er, the coordinates do
not match. If they match, and the 100000-meter square precision is the maximum
precision for either coordinate, the location matches, and the function returns true.
Otherwise, the function continues.

• After removing the already verified parts, the function determines the minimum
length between the two coordinates, as this is needed to cycle over the remaining
values. On lines 22-27, both the easting and northing values are checked. If,
after completing all the values of the shortest coordinate, no mismatches occur, the
function concludes that there is a location match.

In conclusion, the function communicates the result back to the Zenoh flow, which com-
pares the location key match result with those provided by other topic levels, completing
the process. The MGRS matching algorithm examines a maximum of 15 characters, hav-
ing a complexity of O(k) with k as a constant. Essentially, we can execute the match in
constant time, denoted as O(1).

6.2.3. Bloom Filter Key

Utilizing the Bloom Filter as an encoding method for transferring spatial information
within the Zenoh topic eliminates the need to di!erentiate between device types. Instead,
it necessitates distinguishing between the filter and the element to determine whether the
element belongs to the set. Referring to the encoding process outlined in Section 5.3,
which employs a filter-like representation, it becomes crucial to identify the filter and the
element. We achieve this by utilizing the flag area of the location key, where the filter is
marked with an f and the element with an e. The location keys take the following form:



6| Implementation Highlights 65

$zla_b_f_YYYYYY
$zla_b_e_YYYYYY

As usual, the placeholder YYYYYY represents the encoded location data.

On the router side, the matching process mirrors the other methods. Initially, Zenoh
identifies the location key by recognizing the $zla_ prefix. Subsequently, it forwards
the location key to the location-zenoh library, utilizing the location-aware matching
function, which eliminates the prefix. The function then detects the presence of the letter
b, signifying Bloom Filter encoding. Following this, the function divides the remaining
part using underscore characters, forwarding both the encoded location and the f/e flag
to the matching module.
The Bloom Filter encoding consists of a sequence of hexadecimal values separated by
dots, with each representing 32 bits of the filter. It appears as follows:

1f34.75a3b.0.34.f123a

The Bloom filter matching function, for both the filter and the element, divides the
encoding using dots, resulting in two arrays with the values’ representation. Since the
two arrays have the same length, the function operates as follows for each index i of the
array:

1. Retrieve the element at position i from both the filter and the element array.

2. Convert both hexadecimal strings into a u32, representing an unsigned 32-bit integer
value.

3. Apply the bitwise operation and compare the result with the element value. A value
matches if and only if:

<filter> & <element> = <element>

4. If the result is a match, the function proceeds to the next index; otherwise, it returns
false and exits.

A match occurs only if all parts of the element match the corresponding parts in the filter.
In conclusion, the function communicates the result back to the Zenoh flow, which com-
pares the location key match result with those provided by other topic levels, completing
the process. A Bloom filter match is performed in O(k), where k represents the number
of 32-bit array representations derived from the length m of the Bloom filter bit-array.



66 6| Implementation Highlights

6.3. API Wrapper

To o!er Zenoh’s location-aware API to developers, we choose not to develop a totally
new API library or modify the existing one. Instead, we opt to create a wrapper around
the current Zenoh API. This decision is made to ensure complete compatibility with the
existing Zenoh version and to provide developers the same syntax as the current API.

Currently, Zenoh o!ers its API for di!erent programming languages such as Python,
RUST, C, and so on. In our implementation, we choose Python as the main language
due to its greater readability. Additionally, we modify the APIs in the RUST language
as a demonstration that even though the languages are di!erent, the logic with which the
wrapper is created remains unchanged.
To initialize the Zenoh API, the process involves opening a new Zenoh Session through
the open static method within the zenoh module. Typically, this method returns an
instance of the Session class. In constructing our wrapper, we initially create the
LocationSession class. This class, in its initializer, invokes the constructor of Zenoh’s
Session class. The outcome of the Session’s initialization is stored in a private variable
named _zsession, which proves essential for communicating with Zenoh. We introduce
a new open method within the location-zenoh module. Unlike the standard zenoh
module, this modified open method returns an instance of the LocationSession instead
of the regular Session. This design allows developers to choose between utilizing the
location-zenoh module for opening a location-aware version of Zenoh session or the
zenoh module for the standard one.
The LocationSession class incorporates the new API along with modified signatures of
the existing methods, as detailed in Section 4.2.1. Before describing the modified methods
we introduce some detail about the new API we introduce in the location-aware version
of Zenoh.
The declare_position_handler(lifetime, handler) function saves the lifetime and
the handler callback respectively inside the private variables _position_lifetime and
_position_callback. While the _position_callback is useful to read location data
from the developer side, the _position_lifetime parameter plays a central role in posi-
tion updates. Every time an API requires position data, a private function _request_position()
is called.

1 def _request_position(self):
2 if self._position_callback is not None:
3 if self._last_p_update is None or
4 (time() - self._last_p_update) > self._position_lifetime:



6| Implementation Highlights 67

5 position = self._position_callback()
6 self._position = position.to_dict()
7 self._last_p_update = time()
8 else:
9 self._position = None

The function initially verifies the existence of the _position_callback; if it exists, it
then checks for the presence of location data and ensures the validity of the lifetime. If
the lifetime has expired, the function necessitates a new position, which is subsequently
stored in the private _position variable. Additionally, it updates the timestamp of the
last update. If the position is valid, the function simply exits.
We consistently adjust the signatures for all Zenoh API functions, internally we construct
them to operate in the same manner. Let us take, for example, the put function:

1 def put(self, key: IntoKeyExpr, value: IntoValue,
2 precision: Precision = Precision.POINT,
3 encoding=None, priority: Priority = None,
4 congestion_control: CongestionControl = None,
5 sample_kind: SampleKind = None) -> Any:
6

7 self._request_position()
8 location_object = {"type": ZDevice.PUBLISHER,
9 "data": self._position,

10 "precision": precision}
11 #Other data in location_object if necessary

12 key = compute_new_key(location_object, key)
13

14 return self._zsession.put(key, value, encoding, priority,
15 congestion_control, sample_kind)

The function begins by calling the _request_position() function to update the position
data within the class, if necessary. Subsequently, it creates a location object that includes
the device type using the ZDevice enum. The location object is then augmented with
the position data and the chosen encoding precision, representing the selected encoding
technique among POINT (default), MGRS, or BLOOM_FILTER. Additional parameters may
also be included in the location-object, such as the shape describing the area in the
case of a subscriber.
Following this, the compute_new_key function takes on the responsibility of appending
the location key to the topic based on the information within the location_object.



68 6| Implementation Highlights

This function is a part of the location-zenoh library, encompassing all the methods
for encoding and decoding location data, as well as constructing the location key, as
elaborated in Section 6.2. Finally, the result of the original Zenoh Session API function
is returned, utilizing the newly generated topic with the location key instead of the simple
topic.
This approach ensures full compatibility with the original Zenoh, with the wrapper being
specifically tasked with managing location-aware functionality, particularly the inclusion
of the location key.

While adhering to this pattern in all APIs that necessitate the location key, the subscriber
introduces an additional requirement. Specifically, in the scenario of device mobility,
where a device changes its position over time, it is necessary to consistently update the
location key with fresh position data when the lifetime expires. Unlike publishers, which
request the position each time a new message is published, or subscribers with a fixed
area definition that does not utilize their position for the definition, subscribers using
an ego-centric subscription, like the circular area centered on the subscriber’s position,
need to update their subscription over time. To address this situation, we introduce a
MobilitySubscriber class instantiated only when the subscriber definition specifies a
non-infinite position lifetime.
The MobilitySubscriber is a class containing the parameters that define the subscriber,
including encoding techniques, topic, shape, area definition, and more, along with a vari-
able for Zenoh’s Session subscriber class. This novel subscriber type initiates a thread
responsible for invoking the _request_position() function when the lifetime expires.
If the new position di!ers from the previous one, it unsubscribes the old subscriber and
establishes a new subscription with the updated position data. Given that the actual
subscriber is an internal component of the MobilitySubscriber class, this entire process
remains transparent to the developer, relieving them from concerns about mobility man-
agement.
As an illustration, the declare_subscriber function, prior to subscribing using Zenoh’s
Session function, examines the lifetime. If the lifetime is non-infinite, it initiates the
thread and declares the MobilitySubscriber.

1 # declare subscriber function as normal

2 if self._position_lifetime != np.infty and
3 self._position_lifetime is not None:
4 daemon = Thread(target=self._session_background_handler, args=(),
5 daemon=True,
6 name='background_position_update')



6| Implementation Highlights 69

7 daemon.start()
8 mob_subscriber = MobilitySubscriber(self._zsession, subscriber,
9 original_key, <all params>,

10 sub_type=ZDevice.SUBSCRIBER)
11 self._mobility_subscriber = mob_subscriber
12 # return the mobility subscriber or normal subscriber device

The responsibility of updating the position in the background when the lifetime expires
lies with the _session_background_handler function within the LocationSession class:

1 def _session_background_handler(self):
2 while True:
3 sleep(self._position_lifetime)
4 current_p = self._position
5 self._request_position()
6 if current_p['mgrs'] is not None:
7 if current_p['mgrs'] != self._position['mgrs']:
8 self._mobility_subscriber.update_position(self._position)
9 else:

10 if current_p['lat'] != self._position['lat'] or
11 current_p['long'] != self._position['long']:
12 self._mobility_subscriber.update_position(self._position)
13

In the background thread, this function sleeps for the entire lifetime, and upon waking
up, it requests a new position. Subsequently, it updates the mobility subscriber based on
the coordinate type if the new position di!ers. Finally the update_position function of
the MobilitySubscriber class uses the Zenoh Session, saved as _inner variable, to first
undeclare the subscriber, then the function computes the new location key, and finally
re-declares the publisher with the updated data:

1 def update_position(self, position):
2 self._inner.undeclare()
3 key = compute_new_key(<location_object>, self._key)
4 self._inner = self._session.declare_subscriber(key,
5 self._cb,
6 reliability=self._reliability)

We address the mobility subscription problem through the utilization of the background
thread and the MobilitySubscriber class, ensuring a transparent management process.



70 6| Implementation Highlights

6.4. REST Interface

The REST interface does not conform to the Zenoh API standards. Instead, it functions
as a web server capable of interpreting the URL as the topic and utilizing HTTP methods
to execute operations within the Zenoh network, as detailed in Section 4.2.2. In Figure 6.3,
we present a diagram illustrating the functioning of the REST interface and its interaction
with Zenoh.
We modify the web server to incorporate location-aware functionality. To enhance user-
friendliness, we opt to utilize the query string to configure all the required parameters.
For example, to publish a message in Zenoh using location-aware it is su"cient to make
a POST request to a URL like:

https://host:rest_port/key_expr?lat=10.0&long=20.0&shape=circle&r=10

Within this URL, the key_expr functions as the topic without the inclusion of the location
key. The existence of query parameters like lat, shape, and others, signals to the web
server to process this request in location-aware mode. Subsequently, the web server maps
these requests into the API detailed in the preceding section, and a potential output
generated from the API, is formatted in JSON and returned in the HTTP response.

Web Server
+

REST Plugin

Zenoh API

Location 
API 

Location-aware
request 

Normal request 

Zenoh
internals

Figure 6.3: Zenoh REST Flow.



71

7| Experimental Evaluation

In this chapter, we describe the evaluation of our implementation of the location-aware
version of Zenoh. In Section 7.1 we explain the setup we use for the experiment, high-
lighting the evaluation metric we use, and baselines to confront the results with. In
Section 7.2 we provide a summary of the evaluated encoding techniques as a guideline
to choose the best technique based on the system characteristic. From Section 7.3 to
Section 7.5 we present three network topologies with the goal of each test. In Section 7.6
we deal with the system behavior considering a limited computational capacity on router
nodes. In Section 7.7 we discuss about the di!erences in performances using UDP as
transport protocol instead of TCP. Finally, in Section 7.8 we explain the thought behind
the configuration of the false positive percentage on Bloom Filter providing an example
of threshold percentage.

7.1. Experimental Setup

Evaluating our distributed technique requires the emulation of multiple nodes, in which
we ensure consistent conditions across each node throughout the experiments.
We create such environment using a ProxMox cluster running ProxMox Virtual Environ-
ment version 7.4-3. ProxMox cluster consists of multiple physical nodes, each equipped
with an Intel(R) Xeon(TM) E3-1270 v5 CPU clocked at 3.60GHz, 64 GiB of RAM, and
a 1Gbps ethernet connection. On these physical nodes, we create a total of 17 virtual

Virtual machine configuration

OS Ubuntu Server 22.04.1

vCPU 1 socket, 4 cores

vRAM 4 GiB

HDD 120 GiB

Table 7.1: ProxMox node configuration.



72 7| Experimental Evaluation

machines (VMs) configured according to the specifications outlined in Table 7.1.

In addition to configuring the virtual machines (VMs), we install MahiMahi into each
client VM. MahiMahi is a comprehensive toolset that provides a range of network emula-
tion tools, in particular the LinkShell. The LinkShell simulates both dynamic links, such
as those in cellular networks, and links with constant speeds. It categorizes packets into
uplink and downlink queues based on their intended direction, releasing them according
to the respective input packet-delivery trace.
This configuration ensures consistent replication of network conditions across di!erent
nodes, maintaining uniformity throughout various experiments. Moreover, it facilitates
the emulation of wireless connections for both publishers and subscribers, closer to real-
world use cases.

On the router nodes, we opt for Wondershaper installation. This tool allows us to regu-
late the bandwidth of the system network adapter, deliberately slowing down the network
speed across the entire system. This capability enables us to emulate slow connections
within our VMs, contributing to a more comprehensive testing environment.

The experimental evaluation comprises both our location-aware implementation of Zenoh
and its original counterpart. As we construct it using the "Zenoh-0.7.2-rc" version, we
employ the same version as a baseline for our evaluation.
The baselines comprise the experimental outcomes derived from the original Zenoh ver-
sion within our testing environment. This approach allows us to acquire values that are
directly comparable to those obtained using Zenoh Location-aware, as they originate from
a controlled setting with identical node counts, configurations, and network conditions.

7.1.1. Metrics

In our experimental evaluation, we measure multiple metrics.
Latency refers to the delay or time lag between a published message and the instant a
subscriber receives it, typically measured in milliseconds (ms). It is a critical factor in de-
termining the speed and responsiveness of the distributed system. Evaluating latency in
a distributed system often requires conducting a ping-pong test to prevent clock synchro-
nization discrepancies among nodes. This test involves measuring the Round Trip Time
(RTT), which represents the duration it takes for a message to travel to its destination
and return. In this context, latency is calculated as half of the RTT, i.e., RTT/2.
In our testing setup, where both publisher and subscriber nodes are virtualized on the



7| Experimental Evaluation 73

same physical machine, the virtualization environment ensures clock synchronization.
Consequently, there is no need to measure Round Trip Time; instead, we directly obtain
latency as the !T between the publishing instant Tp and the one the message reaches
destination Ts. The latency L is

L(ms) = !T = Ts → Tp (7.1)

Throughput refers to the rate at which messages reach a subscriber. It is measured in
messages per second (msg/s). In our experiments we count the number of messages N the
subscriber receives and then we compute the time interval !T as the di!erence between
the timestamps of the last message (TN) and the first one (T0). Finally we compute the
throughput R as:

R(msg/s) =
N

!T
=

N

TN → T0
(7.2)

7.1.2. Baselines

To evaluate our Location-aware version of Zenoh we need baselines to compare our results
to. Baselines definition mainly depends on the di!erences and the aspects we want to
underline, which are: the overhead incurred when parsing and computing the location
key match, and the di!erences in latency and throughput with the receiver selection in
the routing process rather than message filtering upon receipt.
From these two main points, we define the following experiments to obtain baselines with
the original Zenoh:

• B - Topic: We initiate the message publication process by incorporating location
details, specifically latitude, and longitude, into the first two levels of the topic
structure, resulting in the format: <latitude>/<longitude>/evaluation/test. Sub-
sequently, all subscribers subscribe to the topic pattern */*/evaluation/test, thereby
receiving all messages that are published. Within each subscriber, we establish a
range for acceptable latitude and longitude values. We then extract coordinates
from the received topic and decide whether to accept or disregard incoming mes-
sages based on a comparison between the publisher’s coordinates and the defined
acceptance range. We finally compute metrics only when a message is accepted,
emulating the rejection of messages at the subscriber side before reaching the ap-
plication layer.

• B - Payload: We initiate the message publishing process with the publisher in-
cluding location information within the message payload. This leads to the creation



74 7| Experimental Evaluation

of the topic structure as evaluation/test, which is two levels shorter. Meanwhile,
all subscribers subscribe to the evaluation/test topic. In contrast to the previous
baseline, in this scenario, all subscribers still receive all messages, but the filtering
process now depends on the location information found within the payload rather
than utilizing the topic. Also in this scenario, we compute metrics only when a mes-
sage is accepted, emulating the rejection of messages at the subscriber side before
reaching the application layer.

In these two baselines, it is interesting to analyze how performance evolves when we in-
troduce two levels of complexity into the topic, as opposed to incorporating the same
information into the payload. Ultimately, we compare these results to the same scenar-
ios executed using Zenoh Location-aware to see how our custom implementation natively
performs compared to the original version.

Testing scenarios vary; indeed, we assess our system using three distinct network con-
figurations. Each configuration features a unique topology and parameters, specifically
addressing the number of messages sent per second by the publishers and the link speed
between nodes.

7.2. Results Overview

Before we delve into individual experiments and their outcomes, we present a summary
of the typical characteristics exhibited by encoding techniques, focusing on system and
network properties.
In our evaluation, we examine three network topologies. In the first topology, we partition
the network into two distinct geographical interconnected zones. In each zone, there is a
publisher focused on reaching subscribers within that specific area. Through the use of
location-aware encoding techniques, messages are restricted from traversing between the
two zones, unlike in the baseline scenario. We design this topology to assess the extent to
which the introduction of messages from di!erent zones influences performance in a target
zone. The second topology, referred to as Near-field, aims to measure the overhead that
routers face in handling Zenoh location keys, particularly when subscribers are in close
proximity to the publisher. Additionally, we place additional subscribers configured with
non-matching locations further in the network with the purpose of generating tra"c in
the routers, which occurs only with the baselines. The third topology, known as Far-field,
seeks to measure the impact of non-matching subscribers along the network path. In
this topology, we position our location-matching subscriber far away from the publisher



7| Experimental Evaluation 75

and, for each one, we place an additional subscriber in the middle of the path, which is a
receiver target only for baselines, increasing the outbound tra"c of the router.
In all three topologies, we configure the network to emulate a 4G/LTE connection for both
publishers and subscribers, with a slowed connection of 5Mbps between routers. This con-
figuration enables us to simulate, in conjunction with a high message rate from the sender,
a congested router backbone infrastructure. This choice aims to emphasize the behavior
of encoding techniques, as di!erences may not be visible in a high-performance infras-
tructure. Furthermore, we perform tests in all the three network topologies using UDP as
transport protocols instead of TCP. We conduct this test to observe how performance is
a!ected and how the encoding techniques react eliminating the overhead associated with
the reliable communication provided by TCP. In conclusion, we deliberately reduce the
computational capacity of router nodes to underline the e!ort required to route messages.

In Table 7.2, we present a summary of the results obtained, which are thoroughly ex-
plained in subsequent sections. We use + and - symbols to indicate respectively a good

Scenario
Baseline Location-aware

Topic Payload Base64 MGRS Bloom Filter

Zoned Location-aware

* - - - - + + + + + +

Near-field

TCP + RH + + + + - - - - -

UDP + RH + + + + + + + +

TCP + RL + + + - - + - -

UDP + RL + + + + + + +

Far-field

TCP + RH - - + + + + + + + +

UDP + RH + + + + + + + + + +

TCP + RL + + + - + + +

UDP + RL + + + + + +

Table 7.2: Results Overview.



76 7| Experimental Evaluation

or a bad performance level on each encoding technique in the specified scenario. We
organize the table into the three proposed network topologies, and for each, we indicate
the scenario by mentioning the transport protocol used, along with the computational
capacity of the routers. We describe the computational capacity using the labels RH for
high-performance routers and RL for low-performance routers.

As indicated in Table 7.2, regardless of the transport protocol or router computational
capacity, the location-aware encoding techniques consistently outperform the baseline in a
full location-aware scenario. This improved performance depends on the enhanced routing
capability of the location-aware implementation, ensuring that messages are confined
within their respective zones. This, in turn, mitigates unnecessary tra"c, minimizes
network bandwidth usage, and reduces computational resource wastage. On the other
hand, opting for using a location-aware encoding in a network topology where there is
no location-based distinction, may not always represent the most e"cient choice. The
additional overhead on routers to manage location keys could represent a useless operation
when dealing with a limited number of subscribers or a small set of distinct topics. A
slightly di!erent case is the MGRS encoding technique, which, thanks to its lightweight
nature in terms of both the length of the location key and the required resources, almost
always represents a good choice. Therefore, the selection between di!erent encoding
methods is closely tied to the specific characteristics of the network topology and the
performance capabilities of the system.

7.3. Zoning Network

The zoning network topology aims to underline the di!erences between the three location
awareness methods we develop and the two baselines in a full location-aware scenario with
well defined geographical zones of interest.

7.3.1. Network Layout

The experimental setup we show in Figure 7.1 consists in 17 nodes configured with the
following roles:

• Nodes 1 to 5 and 14 to 17: Zenoh routers

• Nodes 6 to 11: Zenoh subscribers

• Nodes 12 and 13: Zenoh publishers



7| Experimental Evaluation 77

Zenoh Router

Zenoh Subscriber

Zenoh Publisher

14 2

3

4

5

S10

P13

S9

S8

S7

S6

S11

15

16

1

17 P12

Zone 01

Zone 02

Location Match P13

Location Mismatch P13

Figure 7.1: Zoning network topology.

We partition the network into two clearly defined interconnected zones, with each pub-
lisher utilizing distinct location data. Subscribers within a given zone only consider mes-
sages originating from the publisher within that same zone. For instance, subscribers S6,
S7, and S8 exclusively consider messages from publisher P13.
In this network configuration, we employ the MahiMahi trace file named TMobile-LTE-
driving.down to set up the outbound links for publishers and the inbound links for sub-
scribers. This configuration ensures a connection speed of around 100Mbps, emulating
mobile devices connected to a 4G/LTE mobile network. Instead, the router links are fixed
at a constant speed of 5Mbps, which simulates a network infrastructure that requires a
limited number of messages per second to be congested. Although Zenoh has the capa-
bility to dynamically build its network by discovering nearby nodes, we opt for a static
configuration. This choice ensures to maintain the defined network topology throughout
di!erent executions of the same experiment.
Moreover, we configure publishers and subscribers as clients. By doing so, they function
as end devices incapable of routing messages or extending the network. Therefore, they
only depend on the Zenoh router they are connected to.
Next, we establish a message publishing rate of 20 messages per second for publisher
P13 to replicate a realistic scenario. Concurrently, we set a rate of 3200 messages per
second for publisher P12 with the intention of simulating a broad network and inducing



78 7| Experimental Evaluation

congestion in the router links. Given that our primary focus in this topology is to measure
the impact of extraneous messages in a specific zone, we configure the 20 messages per
second on publisher P13 to ensure that the network does not become congested. Sub-
scribers S6, S7, and S8 exclusively capture messages from P13, allowing them to measure
latency and throughput using only those messages. Publisher P12, on the other hand,
serves the purpose of simulating a large volume of messages in a wide network. Its high
rate contributes to link congestion. This behavior should have a notable impact on Zone
01 in baseline experiments, as there are no mechanisms in place to isolate the two zones.
In this test, we employ TCP as the transport protocol to enhance communication re-
liability. Additionally, we configure the Bloom Filter with a 25% probability of false
positives for a domain comprising 100 elements. We discuss the choice of this probability
in Section 7.8.

7.3.2. Results

We conduct the experiment in Zone 01, gathering data from subscribers S6, S7, and S8.
The experiment is repeated 12 times, with each iteration lasting 3 minutes. During each
run, we collect and analyze all the messages received by each subscriber.

In Figure 7.2, we observe the average latency recorded for all messages received during

Figure 7.2: Zoned network: latency.



7| Experimental Evaluation 79

all 12 runs for each subscriber of Zone 01. Messages sent by Zone 02 heavily impact
the latency on the baselines, since they are received also by the subscribers in Zone 01.
In contrast, the location-aware mechanism prevents the unnecessary routing of messages
outside their respective zones, e!ectively partitioning the network.
In Figure 7.3, a consistent pattern emerges in terms of mean throughput. The baselines
show lower throughput in comparison to the location-aware technology. This discrepancy
arises from the baselines receiving a reduced number of messages from Publisher 13 within
the same timeframe. The reason behind this is that subscribers must handle and discard
messages originating from Zone 02 as well, since there are no mechanisms to prevent
message routing. In this chart, we zoom in on the y-axis, starting from 19.5ms instead of
0, to emphasize and accentuate this behavior.
In Figure 7.4, we observe a notable di!erence in the standard deviation calculated across
all latency values for each node. The baselines show greater variability, due to the queuing
phenomenon on inbound links of each node. That means extraneous messages from Zone
02 bring to congestion links in Zone 01, slowing down message processing and increasing
latency also for messages from P13, which are the ones we measure, impacting the overall
performance.

Figure 7.3: Zoned network: throughput.



80 7| Experimental Evaluation

Figure 7.4: Zoned network: latency standard deviation.

7.4. Near-field Location-aware Subscribers

The near-field location-aware subscriber experiment aims to assess performance variations
among the three location-aware technologies and highlight the additional overhead placed
on routers in comparing location keys.

7.4.1. Network Layout

The experimental setup we show in Figure 7.5 consists in 15 nodes configured with the
following roles:

• Nodes 1 to 5 and 14 to 16: Zenoh routers

• Nodes 6 to 11: Zenoh subscribers

• Node 13: Zenoh publisher

In this experiment, we do not partition the network into distinct geographical zones.
Instead, we position subscribers that match published messages closer to the unique pub-
lisher. Opting for a single publisher is our choice to prevent biases from extraneous
messages, ensuring an isolated test environment. Node P13 serves as the publisher, con-
figured with a message rate of 3200 messages per second, a quantity su"cient to induce



7| Experimental Evaluation 81

congestion in the links. A congested network deliberately slows down messages, accentu-
ating performance di!erences. In a less congested or more e"cient infrastructure, these
di!erences would not be as significant.
Subscribers S6, S7, and S8 match the location configuration of the publisher, while the
remaining subscribers do not record any messages, if received. Placing matching sub-
scribers closer to the publisher allows us to measure latency before encountering other
client nodes, whereas non-matching subscribers are positioned at the network’s edge, with
the sole purpose of representing possible outbound links for routers 14, 4, and 5.

Zenoh Router

Zenoh Subscriber

Zenoh Publisher

14 2

3

4

5

S10

P13

S9

S8

S7

S6

S11

15

16

1

Location Match

Location Mismatch

Figure 7.5: Near-field location-aware subscribers topology.

In this configuration, our objective is to evaluate the overhead that routers encounter in
handling the location key. As the matching subscribers constitute the first point where a
message intersects a client in the path from the subscriber to the network edges, we gauge
the time it takes for a message to be routed up to that point, ensuring the exclusion of any
alternative paths. In the baseline scenarios, the subscribers still retain their position as the
primary points in the path, but we introduce an additional outbound link, representing
the connection with a broader network. This is achieved by placing S9, S10, and S11 after
our target nodes. Of course, these last nodes still exist in all the experiments, but the
location-aware mechanism prevents messages from overcoming routers 14, 4, and 5.

The remaining experimental parameters remain consistent with the previous experiment
for a better comparison. We use TCP as transport protocol. Then, both the publisher



82 7| Experimental Evaluation

uplink and subscribers downlink utilize the MahiMahi trace file, specifically TMobile-
LTE-driving.down, ensuring an average speed of 100Mbps. Similarly, Wondersharper
decelerates links between routers to 5Mbps. Furthermore, we maintain a false positive
probability of 25% for the Bloom Filter within the same domain of 100 entities.

7.4.2. Results

We conduct the experiment 12 times, with each iteration lasting 3 minutes. During each
run, we collect and analyze the messages received by subscribers S6, S7, and S8.

In Figure 7.6, we can observe the influence of the location matching mechanism. The
congested network and the proximity of the subscribers to the publisher highlight the
distinctions among the three location awareness methods and the baselines. In fact, the
latency of the three location-aware encoding is much higher w.r.t. the baselines due to
the presence of an additional key to handle, while the baselines just match the topic and,
in this experiment, dispatch messages to all the subscribers.
In Figure 7.7 we zoom on the three location-aware methods. The best performing is
MGRS encoding. It has a shorter representation, 15 characters maximum, resulting in a
smaller message size and requiring less computational time for matching.
The worst-performing method is the Base64 one. Due to the possibility of representing

detailed areas, it requires a more complex encoding. In fact, the data representation as

Figure 7.6: Near-field location-aware subscribers network: latency.



7| Experimental Evaluation 83

Figure 7.7: Latency zoom on location-aware methods.

a JSON object and the subsequent encoding in Base64 string generates a longer location
key. In addition, routers must decode the base64 string and recreate the objects to handle
them, resulting in longer and more complex operations.
Finally, between the two, we find the Bloom Filter. It has the ability to describe com-
plex areas but it adds the possibility of false positives during the match. The length of its
encoding is comparable to the one of the Base64 technique. The Bloom Filter uses the bit-
wise operations to match filters, which requires fewer computational resources compared
to the decoding and parsing operations necessary in the Base64 technique.

In Figure 7.8, we observe the e!ects on the throughput. Despite the increased latency
of location-aware methods, the throughput remains good. In fact, as evident from the
chart in Figure 7.9, the higher variability observed in location-aware methods indicates a
significant queuing phenomenon. This phenomenon, indeed, is responsible for an increase
in the average latency due to a slowdown in processing most of the messages, an e!ect
that does not impact the average throughput. Let us take, for example, a data-set ob-
tained from subscriber S6 on the location-aware Base64 technique experiment. The graph
of the latency of individual messages, shown in Figure 7.10, illustrates how the latency
of a single message increases initially, then stabilizes, and increases again towards the
end. The central part of the graph, where stabilization occurs, represents the network
in a steady state, meaning we are in a network congestion condition and the queues re-
main stable. With queue stability messages still be processed at a constant rate but the
longer wait in both outbound and inbound queues in interconnected routers, increases the



84 7| Experimental Evaluation

overall latency shifting the reception of the same amount of messages, compared with the
baselines, forward in time.

Figure 7.8: Near-field location-aware subscribers network: throughput.

Figure 7.9: Near-field Location-aware subscribers network: latency standard deviation.



7| Experimental Evaluation 85

Figure 7.10: Base64 location-aware single experiment latency on node 6.

7.5. Far-field Location-aware Subscribers

The topology of the far-field location-aware subscribers aims to evaluate the influence of
subscribers positioned halfway along a path between a publisher and a matching sub-
scriber. This is done to emphasize distinctions between the baseline, where messages are
sent to all subscribers, and the location-aware techniques, which directly select target
subscribers on routers.

7.5.1. Network Layout

The experimental configuration we show in Figure 7.11 presents the same topology we use
in the near-field subscriber setup. The only variation lies in the placement of subscribers
S6 and S7. We place them at the edges of the network, while we move nodes S9 and
S10 in the middle of the path. This arrangement allows us to assess the performance
of the location-aware version in a network where there are the presence of non-relevant
subscribers.
Message rate, links speed, transport protocol, and Bloom Filter false positive probability
remain unchanged for a better comparison.



86 7| Experimental Evaluation

Zenoh Router

Zenoh Subscriber

Zenoh Publisher

14 2

3

4

5

S6

P13

S7

S8

S9

S10

S11

15

16

1

Location Match

Location Mismatch

Figure 7.11: Far-field location-aware subscribers topology.

7.5.2. Results

We conduct the experiment 12 times, with each iteration lasting 3 minutes. During each
run, we collect and analyze all the messages received by subscribers S6, S7, and S8.
Shifting S6 with S10, and S7 with S9, moving subscribers to the edges of the network

induces a shift in the dynamics of the proposed methods. Figure 7.12 illustrates the
better performance of location-aware methods in terms of latency when compared to
the baselines, particularly when juxtaposed with the Near-field experiment introduced in
Section 7.4. The higher network hops and the presence of extraneous subscribers along the
route a!ect the e"ciency of message routing in the baseline scenarios. This is attributed
to the higher tra"c on the links and an increased workload on routers. For example, router
14, referring to the topology in Figure 7.11, initially dispatches a message to subscriber
10, which rejects it, before forwarding the same message to router 1. In contrast, location-
aware methods avoid this behavior. Router 14 considers only router 1 as next step since
subscriber 10 does not meet the location criteria and it is considered unrelated to the
current topic.
Regarding throughput, as depicted in Figure 7.13, we observe the same trend as in the
Near-field experiment. The increased latency characteristic of the baselines does not result
in a reduction of throughput; in fact, the queuing phenomenon reoccurs. In Figure 7.14,
the standard deviation calculated in latency reveals a greater variability in values for the



7| Experimental Evaluation 87

Figure 7.12: Far-field location-aware subscribers network: latency.

baselines compared to location-aware methodologies, which confirms the behavior we see
in Section 7.4 but a!ecting the baselines instead of the location-aware techniques.
Lastly, looking at the three location-aware encoding techniques, the di!erence among
them confirms the previously described results, ranking MGRS first, followed by Bloom
Filter, and positioning the Base64 technique as the slowest. This also confirms that the
mutual performances among the three methods are maintained across di!erent topologies,
since they reflect the results we find in the experiment in Section 7.4.



88 7| Experimental Evaluation

Figure 7.13: Far-field location-aware subscribers network: throughput.

Figure 7.14: Far-field location-aware subscribers network: latency standard deviation.



7| Experimental Evaluation 89

7.6. Computing Capacity

Along with the performance the network infrastructure provides, another aspect influenc-
ing the system’s performance is the computational capacity of the routers responsible for
message distribution. While we take into account the first aspect by inducing congestion
on the links, for the computational capacity, we conduct specific tests.
Thanks to the Proxmox configurations, we limit the vCPUs to 20% of their actual capac-
ity in all virtual machines serving as routers. By reducing the computational capacity we
want to evaluate how our system performance changes when routers require more time to
process messages and how this impacts in particular on the encoding techniques.
Let us take the Near-field subscribers experiment we discuss in Section 7.4. Conducting
the identical experiment with a limited CPU capacity, for which we report the latency
chart in Figure 7.15 along with its standard deviation in Figure 7.17, results in an increase
in the average latency accompanied by a rise in the standard deviation calculated on the
latency values. This is attributed to the increased time messages require for processing.
However, this combination does not impact the throughput as we can see from Figure 7.16,
which does not show significant variations compared to what we achieve using the full
computational capacity of the vCPUs, shown in Figure 7.21. We observe this trend in
the majority of our experiments conducted with limited computational capacity. This
indicates that when we decrease the processing speed of the router, the entire system
experiences an identical slowdown.

Figure 7.15: Near-field location-aware subscribers network: CPU 20% latency.



90 7| Experimental Evaluation

Figure 7.16: Near-field location-aware subscribers network: CPU 20% throughput.

Figure 7.17: Near-field location-aware subscribers network: CPU 20% latency standard
deviation.



7| Experimental Evaluation 91

A di!erent scenario concerns the trend among the encoding techniques related to the
same experiment. In the case of the Near-field Location-aware subscriber experiment, the
proximity of subscribers to the publisher is su"cient to ensure that there is no alteration
in the trend among the di!erent methods since the number of routers that can a!ect the
performance are limited.
A di!erent situation occurs, for example, in the Far-field experiment that we discuss in
Section 7.5. By reducing the computational capacity of routers, there is also a variation
in the mutual trend among the di!erent methodologies. In the chart we present in Fig-
ure 7.18, the higher number of routers between the publisher and the subscribers more
significantly impacts the latency in the location-aware Base64 and Bloom Filter methods
if compared to other methodologies, due to the longer encoding each router has to process.
At the same time, the standard deviation computed over latency values, as we can see
in Figure 7.20, shows a lower value considering the latency increasing. This means that
routers process messages more slowly but also more consistently.
The higher latency and the lower standard deviation are also evident from the decrease
in throughput, which we report in Figure 7.19, which characterizes the two techniques.
However, considering that we reduce the computational capacity by 80% in an already
congested network, the observed di!erence is not significant enough to characterize com-
putational capacity as the primary influencing factor on the performance of location-aware
methods compared to our baselines.

Figure 7.18: Far-field location-aware subscribers network: CPU 20% latency.



92 7| Experimental Evaluation

Figure 7.19: Far-field location-aware subscribers network: CPU 20% throughput.

Figure 7.20: Far-field location-aware subscribers network: CPU 20% latency standard
deviation.



7| Experimental Evaluation 93

7.7. Transport Protocol

Zenoh does not only work with TCP as a transport protocol but it can be configured with
di!erent types of transport protocols, as we mentioned in Section 2.3.1.
To assess the system’s response to a diverse transport protocol, we opt to employ UDP.
Unlike TCP, UDP is a connectionless protocol that does not ensure packet delivery. The
absence of these features makes UDP a lightweight and faster transport protocol when
compared to TCP. In our experiments, we execute all the experiments with the usual
configurations described above, conducting each test 12 times to obtain data directly
comparable to that already discussed.
In all the results we obtain, we observe a similar behavior. Specifically, a significant de-
crease in the average latency of each experiment due to the absence of the multiple over-
heads that distinguish TCP from UDP, resulting in a reduction in the standard deviation
calculated on latency values. This indicates a more consistent message rate transmission
over time. However, the trend among the various encodings remains the same, as the
change in transport protocol does not impact the computational load that routers have
to handle.
On the other hand, we observe a decrease in the average throughput. This is due to the
fact that UDP does not guarantee message delivery, lacking retransmission mechanisms.
In the congested network condition in which we conduct the tests, the lost packets using
UDP are significantly higher than those lost with TCP, resulting in a lower number of
received packets and consequently, a lower throughput.
For illustration purposes, let us examine the Near-field Subscriber experiment we discuss
in Section 7.4. In this experiment, all configuration parameters remain unchanged except
for the switch of the transport protocol from TCP to UDP. In that way, we can compare
results directly.
As we can see from Figure 7.21 compared to the latency chart using TCP in Figure 7.6,
we have a huge reduction of the mean latency computed over the 12 runs.
In Figure 7.22, we present the throughput chart. When comparing it with the TCP
experiment chart in Figure 7.8, we observe a decrease in average throughput, particu-
larly noticeable in the Location-aware Base64 and Bloom Filter experiments. These two
methods exhibit greater weight in terms of topic length, consequently making them more
susceptible to packet loss in a congested network. Similarly, despite an overall reduction
in standard deviation across all latency values, as depicted in Figure 7.23, there is a slight
elevation in values for the Location-aware Base64 and Bloom Filter techniques, a direct
result of the longer encoding requiring messages to wait in the queue for a longer period,
increasing queue length over time.



94 7| Experimental Evaluation

Figure 7.21: UDP near-field location-aware subscribers network: latency.

Figure 7.22: UDP near-field location-aware subscribers network: throughput.



7| Experimental Evaluation 95

Figure 7.23: UDP near-field location-aware subscribers network: latency standard devia-
tion.

Even more interesting is what happens when considering the use of UDP with a simulta-
neous reduction in the computational capacity of the routers. Let us take, for example,
the Far-field Location-aware subscribers experiment with the vCPUs of routers limited to
the 20% of their capacity, whose results are reported in Figures 7.18 - 7.20.
Along with the latency and its standard deviation reduction reported respectively in
Figure 7.24 and in FIgure 7.26, we observe convergence in the performance of individual
encodings when compared to each other. Indeed, if the reduction in computational capac-
ity highlights di!erences in both the Location-aware Base64 and Bloom Filter methods,
the use of UDP eliminates these distinctions, lightening the message routing at the trans-
port protocol level. Regarding throughput in Figure 7.25, as we already mentioned, the
increased number of lost messages results in a general decrease in throughput.
MGRS encoding shows an interesting behavior. It is the lightest location-aware method
we implement, and by removing the TCP overhead using UDP, it is able to keep a higher
throughput compared with the other methods despite the reduced computational capacity
and the network distance from the publisher. In fact, the shorter encoding combined with
a lower number of target subscribers thanks to the location-aware mechanism, makes the
MGRS encoding technique less susceptible to packet loss.



96 7| Experimental Evaluation

Figure 7.24: UDP far-field location-aware subscribers network: latency.

Figure 7.25: UDP far-field location-aware subscribers network: throughput.



7| Experimental Evaluation 97

Figure 7.26: UDP far-field location-aware subscribers network: latency standard deviation

7.8. Bloom Filter Configuration

Up to now, we use a false positive probability of 25% for the Bloom Filter. We do not
choose this percentage randomly but it comes from an additional test we conduct to
determine the threshold beyond which no false positives occur within the defined domain.
The false positive parameter together with the number of elements in the domain, as we
explain in Section 5.3, contributes to defining the length of the bit-array that forms the
Bloom Filter, impacting linearly on processing time.

7.8.1. Setup

In Figure 7.27 we report the domain within 6 subscribers configuration we use to conduct
this test. Using a 5↑ 5 units grid with a resolution of half a unit, we derive 100 elements
for our testing domain.
In this test, the network topology, message rate, transport protocol, or computational

capacity are not relevant, as our focus is to understand the threshold beyond which no
false positives occur.
In practice, we configure a single publisher to send a unique message for each element
in the domain. On the subscriber side, we record every message each subscriber receives
within the identifier of the domain element. In each run, we incrementally increase the



98 7| Experimental Evaluation

Figure 7.27: Bloom Filter test domain.

false positive percentage by 10%, observing, at the end of the test, the output the sub-
scribers produce and comparing it with the expected results we report in Table 7.3, which
represents the outcome of a correct execution.

Subscriber Identifier Expectation: correct execution outcome

S6 6
S7 6
S8 4
S9 4
S10 1
S11 3

Table 7.3: Expected Results.



7| Experimental Evaluation 99

7.8.2. Results

In Table 7.4 we report the result we obtain.
Up to 20%, we do not encounter any false positives. Upon setting the percentage to 30%,
we observe the first false positive occurring in S9, related to a point located at (1.25, 0.75),
which is outside the subscriber range (1.5→ 2.5, 2.5→ 3.5).
To conduct further verification, we also perform the test with a 40% false positive probabil-
ity. As expected, we obtain a total of 5 false positives recorded across di!erent subscribers,
indicating that as the percentage increases, once it surpasses the threshold, false positives
also increase.
Finally, we also test 25% as a value, and after ensuring that it does not produce any false
positives, we choose it as the value for our experiments.

False positive percentage Result

1% No false positives
10% No false positives
20% No false positives
25% No false positives
30% S9 registers 1 false positive
40% S6 register 1 false positive, as well as S7 and S9. S11

registers 2 false positives.

Table 7.4: Obtained results.

To show how the false positive percentage impacts the Bloom Filter performances, in
Figure 7.28 we present the latency chart derived from the Far-field Subscriber experiment
with the Bloom Filter false positive probability set to 1%. The experiment shares the
other configuration outlined in Section 7.5. From the chart, we observe that the latency
associated with Bloom Filters is significantly higher, both compared to other methodolo-
gies and in comparison with the values we obtain with a 25% false positive probability,
as seen in Figure 7.12. This di!erence is due to the length of the bit-array describing the
filter. For the same number of domain elements, in the case of a 25% probability, the bit-
array has a length of 320 bits, while at 1%, we obtain a length of 960 bits, which is much
higher. Indeed, establishing an accurate false positive probability in the Bloom Filter
encoding technique is a crucial factor for system performance, with potentially significant
e!ects on message latency.



100 7| Experimental Evaluation

Figure 7.28: Far-field subscribers network latency with 1% false positive.



101

8| Conclusion

In this thesis, we address the challenge of directly associating data with its location while
transmitting messages. This proves valuable in large-scale IoT systems as it allows for
linking message senders with interested receivers not solely based on the data type, which
may be identical for multiple senders, but also by considering the location where the
data is generated, maintaining the separation of these two aspects. This enables tasks
like coordinating and controlling mobile robots in space, collecting data depending on
geographical location, monitoring value changes for moving sensors, and various other
applications where location is a valuable attribute.
We address this issue by enhancing the Zenoh protocol with location-aware capabilities.
Since Zenoh operates as a topic-based Pub/Sub protocol, we opt to use a single topic
level for conveying geographic information, encapsulating it within an identifiable key, in
an encoded manner. The proposed approach allows us to alter the routing of messages
from publishers to subscribers based on positional information, all without the necessity
of internal router changes, requiring no more than 6 lines of code in the protocol’s core
and relocating the handling of positional information external to the routing module,
injecting, only at the end, the location-based match result into Zenoh’s topic matching
interface. Furthermore, this approach ensures the preservation of the original matching
interface, thereby maintaining compatibility with all devices using the native version of
the protocol. In addition, our proposed solution lets us to develop multiple ways to encode
information within the same key, providing di!erent encoders each of them representing
a trade-o! between performance and expressiveness.
We introduce three encoding techniques for representing geographical data. The first
method utilizes a full-featured Base64 representation of a JSON object, allowing us to
depict complex areas with punctual precision. The MGRS encoding, on the other hand,
employs a lighter approach in terms of both length and computational resources, at the
expense of precision. Lastly, the Bloom Filter encoding enables us to approximate complex
shapes and areas, introducing a probability of false positives during matching.

We assess our system using two key metrics: latency and throughput. We establish two
baselines where messages are discarded upon reception. These baselines involve transfer-



102 8| Conclusion

ring location data initially through two topic levels and then via message payload. We
test three distinct network topologies:

• Zoning network: This configuration represents an example of a network requiring
location-awareness. We delineate two logically distinct geographical zones with the
purpose of evaluating the system’s performance by excluding irrelevant messages
from a designated zone of interest. This experiment e!ectively generates a logically
split network topology and it aims to evaluate a concrete location-aware scenario.

• Near-field subscriber network: This topology aims to evaluate the overhead
that routers face in decoding and handling position-based matching. We strategi-
cally place subscribers close to the publisher, extracting di!erences in latency and
throughput between location-aware techniques and the established baselines. Al-
though this network does not simulate a location-aware scenario, we leverage it to
comprehend the boundaries within which our solution can demonstrate e!ectiveness
in diverse contexts.

• Far-field subscriber network: In this scenario, we evaluate the consequences
of positioning an additional subscriber along the communication path between the
publisher and the target subscriber. The objective is to determine whether optimiz-
ing routers by reducing outbound paths to only the essential ones, even with the
added overhead of location-based matching, is compensated by the longer distance
also in a non-location-based network. We utilize this network to gain insights into
the trade-o!s involved in such a configuration.

For each of the three network topologies, we conduct experiments employing either TCP
or UDP as transport protocols. These experiments involve utilizing the complete compu-
tational capacity of the router as well as constraining it to operate at only 20% of its full
capacity. Additionally, in the Near-field and Far-field experiments, we intentionally induce
network congestion by limiting the network bandwidth and generating a high volume of
messages per second. This deliberate congestion aims to stress the distributed system to
underscore di!erences that might not be apparent in a well-performing network.

Based on the obtained results, we argue that location-aware techniques outperform base-
lines in the Zoning network. Location-aware encoding techniques result in a mean latency
reduction of more than 50%. In fact, limiting message routing to the zone of interest
avoids resource waste both in terms of computation and network tra"c. Furthermore, in
a large-scale system with numerous publishers and subscribers, location-awareness pre-
vents message flooding events. In simpler terms, it helps avoid the unnecessary flow of
a large number of messages throughout the entire network. However, in a mixed, non-



8| Conclusion 103

logically-split network, performance variations are evident. The Near-field experiment
underscores the overhead associated with location-aware messages compared to the base-
lines. This overhead depends on the longer topic generated by the location key and the
time required for decoding and processing the key. As expected, computing a second
match, where there are no needs to filter messages based on location, leads to a latency
increase, reaching up to 70% in the worst scenarios.
Furthermore, we assess the di!erences among the three location-aware encoding tech-
niques. The Default method, owing to its complexity, exhibits inferior performance as it
requires more processing time. In contrast, the MGRS encoding performs significantly
better, gaining a 40% margin in latency, approaching the baselines due to its concise
encoding and straightforward matching process. The Bloom Filter demonstrates an in-
termediate performance, featuring a longer representation o!set by lightweight matching
through bitwise operations. Additionally, the performance of Bloom Filter is influenced
by the desired false positive probability, which significantly impacts the length of the lo-
cation key.
Ultimately, the constrained computational capacity and the adoption of UDP as the trans-
port protocol do not consistently alter the pattern among the five distinct techniques. The
only noteworthy observation is the resilience of the MGRS encoding in congested, slow,
and resource-constrained networks, rendering it suitable for such scenarios.

By separating the topic match from the location match, opportunities for improvement
and extensions emerge, including:

• Investigating innovative and more e"cient encoding techniques aimed at mitigating
latency and augmenting system throughput. This involves a deeper examination
of encoding methodologies that have the potential to optimize data processing in
routers and reduce encoding length, contributing to improved overall performance.

• Exploring and integrating alternative approaches in describing location, introducing
logical overlays. This entails going beyond conventional geographic-like coordinates
and considering the incorporation of custom domain definitions across all encoding
techniques. This exploration could open avenues for a more versatile and tailored
representation of location information, enhancing the adaptability of the system
to diverse scenarios and potentially improving its overall e!ectiveness in handling
location-based data.

In summary, we have e!ectively integrated location-aware functionality into the Zenoh
protocol, introducing the ability to subscribe using both topic and location in a novel, in-



104 8| Conclusion

dependent manner while maintaining compatibility with the original version of the proto-
col. Our implementation encompasses three encoding techniques, each tailored to specific
properties, making them suitable for diverse situations. We assess the performance of our
implementation across three distinct network topologies and four di!erent configuration
combinations, achieving a 50% reduction in latency in best scenarios.



105

Bibliography
[1] V. Antipov, O. Antipov, and A. Pylkin. Mobility support in publish/subscribe

systems. ITM Web of Conferences, 6:03001, 2016. ISSN 2271-2097. doi:
10.1051/itmconf/20160603001. URL http://www.itm-conferences.org/10.1051/
itmconf/20160603001.

[2] P. Bellavista, A. Corradi, and A. Reale. Quality of Service in Wide Scale Pub-
lish—Subscribe Systems. IEEE Communications Surveys & Tutorials, 16(3):1591–
1616, 2014. ISSN 1553-877X. doi: 10.1109/SURV.2014.031914.00192. URL http:
//ieeexplore.ieee.org/document/6803100/.

[3] M. Bishop. Rfc 9114: Http/3, Jun 2022. URL https://datatracker.ietf.org/
doc/rfc9114/.

[4] C. Bormann, A. P. Castellani, and Z. Shelby. CoAP: An application protocol for
billions of tiny internet nodes. 16(2):62–67. ISSN 1089-7801. doi: 10.1109/MIC.
2012.29. URL http://ieeexplore.ieee.org/document/6159216/.

[5] G. Cugola and J. Munoz de Cote. On Introducing Location Awareness in Publish-
Subscribe Middleware. In 25th IEEE International Conference on Distributed Com-
puting Systems Workshops, pages 377–382, Columbus, OH, USA, 2005. IEEE. ISBN
978-0-7695-2328-6. doi: 10.1109/ICDCSW.2005.101. URL http://ieeexplore.
ieee.org/document/1437200/.

[6] J. Dizdarevic and A. Jukan. Experimental Benchmarking of HTTP/QUIC Protocol
in IoT Cloud/Edge Continuum. In ICC 2021 - IEEE International Conference on
Communications, pages 1–6, Montreal, QC, Canada, June 2021. IEEE. ISBN 978-
1-72817-122-7. doi: 10.1109/ICC42927.2021.9500675. URL https://ieeexplore.
ieee.org/document/9500675/.

[7] P. Eugster. Type-based publish/subscribe: Concepts and experiences. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 29(1):6–es, 2007.

[8] M. Hazas, J. Scott, and J. Krumm. Location-aware computing comes of age. 37(2):

http://www.itm-conferences.org/10.1051/itmconf/20160603001
http://www.itm-conferences.org/10.1051/itmconf/20160603001
http://ieeexplore.ieee.org/document/6803100/
http://ieeexplore.ieee.org/document/6803100/
https://datatracker.ietf.org/doc/rfc9114/
https://datatracker.ietf.org/doc/rfc9114/
http://ieeexplore.ieee.org/document/6159216/
http://ieeexplore.ieee.org/document/1437200/
http://ieeexplore.ieee.org/document/1437200/
https://ieeexplore.ieee.org/document/9500675/
https://ieeexplore.ieee.org/document/9500675/


106 | Bibliography

95–97. ISSN 0018-9162. doi: 10.1109/MC.2004.1266301. URL http://ieeexplore.
ieee.org/document/1266301/.

[9] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. MQTT-S &#x2014; A pub-
lish/subscribe protocol for Wireless Sensor Networks. In 2008 3rd International
Conference on Communication Systems Software and Middleware and Workshops
(COMSWARE ’08), pages 791–798, Bangalore, India, Jan. 2008. IEEE. ISBN 978-
1-4244-1796-4. doi: 10.1109/COMSWA.2008.4554519. URL http://ieeexplore.
ieee.org/document/4554519/.

[10] S. Khare and M. Totaro. Big data in iot. In 2019 10th International Conference
on Computing, Communication and Networking Technologies (ICCCNT), pages 1–7.
IEEE, 2019.

[11] R. B. Langley. The utm grid system. GPS world, 9(2):46–50, 1998.

[12] W.-Y. Liang, Y. Yuan, and H.-J. Lin. A Performance Study on the Throughput and
Latency of Zenoh, MQTT, Kafka, and DDS.

[13] J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni.
A comparative evaluation of AMQP and MQTT protocols over unstable and mobile
networks. In 2015 12th Annual IEEE Consumer Communications and Networking
Conference (CCNC), pages 931–936, Las Vegas, NV, USA, Jan. 2015. IEEE. ISBN
978-1-4799-6390-4. doi: 10.1109/CCNC.2015.7158101. URL http://ieeexplore.
ieee.org/document/7158101/.

[14] M. Milo#evi$, V. Mladenovi$, and U. Pe#ovi$. Evaluation of HTTP/3 Protocol for
Internet of Things and Fog Computing Scenarios. Studies in Informatics and Control,
30(3):75–84, Sept. 2021. ISSN 12201766, 1841429X. doi: 10.24846/v30i3y202107.

[15] N. Naik. Choice of e!ective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP. In 2017 IEEE International Systems Engineering Sympo-
sium (ISSE), pages 1–7, Vienna, Austria, Oct. 2017. IEEE. ISBN 978-1-5386-
3403-5. doi: 10.1109/SysEng.2017.8088251. URL http://ieeexplore.ieee.org/
document/8088251/.

[16] A. Prajapati. Amqp and beyond. In 2021 International Conference on Smart Ap-
plications, Communications and Networking (SmartNets), pages 1–6, 2021. doi:
10.1109/SmartNets50376.2021.9555419.

[17] A. Rawat and A. Pandey. Recent trends in iot: A review. Journal of Management
and Service Science (JMSS), 2(2):1–12, 2022.

http://ieeexplore.ieee.org/document/1266301/
http://ieeexplore.ieee.org/document/1266301/
http://ieeexplore.ieee.org/document/4554519/
http://ieeexplore.ieee.org/document/4554519/
http://ieeexplore.ieee.org/document/7158101/
http://ieeexplore.ieee.org/document/7158101/
http://ieeexplore.ieee.org/document/8088251/
http://ieeexplore.ieee.org/document/8088251/


8| BIBLIOGRAPHY 107

[18] T. R. Sheltami, A. A. Al-Roubaiey, and A. S. H. Mahmoud. A survey on
developing publish/subscribe middleware over wireless sensor/actuator networks.
Wireless Networks, 22(6):2049–2070, Aug. 2016. ISSN 1022-0038, 1572-8196.
doi: 10.1007/s11276-015-1075-0. URL http://link.springer.com/10.1007/
s11276-015-1075-0.

[19] D. Soni and A. Makwana. A SURVEY ON MQTT: A PROTOCOL OF INTERNET
OF THINGS(IOT).

[20] S. Tarkoma and J. Kangasharju. Mobility and completeness in publish/subscribe
topologies. In IASTED International Conference on Networks and Communication
Systems, ACTA Press. Citeseer, 2005.

[21] T. Z. Team. Zenoh overhead: a story from our community. https://zenoh.io/
blog/2021-07-05-zenoh-overhead/. [Accessed 31-May-2023].

[22] T. Z. Team. Zenoh reliability, scalability and congestion control. https://zenoh.
io/blog/2021-06-14-zenoh-reliability/, 2021. [Accessed 31-May-2023].

[23] T. Z. Team. Taming the dragon: Get started with zenoh. https://www.linkedin.
com/smart-links/AQEuTXQcy3TLag/6f6c5594-3452-4572-9f92-26e78098c9d5,
2022. [Accessed 28-Feb-2023].

[24] R. I. Vitanov and D. N. Nikolov. A state-of-the-art review of ultra-wideband localiza-
tion. In 2022 57th International Scientific Conference on Information, Communica-
tion and Energy Systems and Technologies (ICEST), pages 1–4. IEEE. ISBN 978-1-
66548-500-5. doi: 10.1109/ICEST55168.2022.9828723. URL https://ieeexplore.
ieee.org/document/9828723/.

[25] X. Xiong and J. Fu. Active status certificate publish and subscribe based on amqp.
In 2011 International Conference on Computational and Information Sciences, pages
725–728, 2011. doi: 10.1109/ICCIS.2011.63.

[26] ZettaScale. Zenoh - the zero overhead, pub/sub, store, query, and compute protocol.,
. URL https://zenoh.io.

[27] ZettaScale. Zettascale product: Zenoh, . URL https://www.zettascale.tech/
product/zenoh.

http://link.springer.com/10.1007/s11276-015-1075-0
http://link.springer.com/10.1007/s11276-015-1075-0
https://zenoh.io/blog/2021-07-05-zenoh-overhead/
https://zenoh.io/blog/2021-07-05-zenoh-overhead/
https://zenoh.io/blog/2021-06-14-zenoh-reliability/
https://zenoh.io/blog/2021-06-14-zenoh-reliability/
https://www.linkedin.com/smart-links/AQEuTXQcy3TLag/6f6c5594-3452-4572-9f92-26e78098c9d5
https://www.linkedin.com/smart-links/AQEuTXQcy3TLag/6f6c5594-3452-4572-9f92-26e78098c9d5
https://ieeexplore.ieee.org/document/9828723/
https://ieeexplore.ieee.org/document/9828723/
https://zenoh.io
https://www.zettascale.tech/product/zenoh
https://www.zettascale.tech/product/zenoh




109

List of Figures

1.1 High level architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Pub/Sub message pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Pub/Sub network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 MQTT-S gateways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Connection establishment di!erences in HTTP. . . . . . . . . . . . . . . . 18
2.5 Zenoh network topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Example of data interest in Milano areas. . . . . . . . . . . . . . . . . . . . 28
3.2 Location as a topic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Location in the payload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Zenoh location awareness example. . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Zenoh location awareness example with explicit key. . . . . . . . . . . . . . 35

4.1 Zenoh location-aware intersection example. . . . . . . . . . . . . . . . . . . 42

5.1 MGRS Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 MGRS matching example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Insertion on bit-array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Query on Bloom filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Bloom filter domain definition. . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 Example of Bloom filter domain representation. . . . . . . . . . . . . . . . 55
5.7 Query on Bloom filter in Zenoh router. . . . . . . . . . . . . . . . . . . . . 56

6.1 Zenoh internals structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 General structure of the Location Key. . . . . . . . . . . . . . . . . . . . . 61
6.3 Zenoh REST Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1 Zoning network topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Zoned network: latency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.3 Zoned network: throughput. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4 Zoned network: latency standard deviation. . . . . . . . . . . . . . . . . . 80



110 | List of Figures

7.5 Near-field location-aware subscribers topology. . . . . . . . . . . . . . . . . 81
7.6 Near-field location-aware subscribers network: latency. . . . . . . . . . . . 82
7.7 Latency zoom on location-aware methods. . . . . . . . . . . . . . . . . . . 83
7.8 Near-field location-aware subscribers network: throughput. . . . . . . . . . 84
7.9 Near-field location-aware subscribers network: latency standard deviation. 84
7.10 Base64 location-aware single experiment latency on node 6. . . . . . . . . . 85
7.11 Far-field location-aware subscribers topology. . . . . . . . . . . . . . . . . . 86
7.12 Far-field location-aware subscribers network: latency. . . . . . . . . . . . . 87
7.13 Far-field location-aware subscribers network: throughput. . . . . . . . . . . 88
7.14 Far-field location-aware subscribers network: latency standard deviation. . 88
7.15 Near-field location-aware subscribers network: CPU 20% latency. . . . . . 89
7.16 Near-field location-aware subscribers network: CPU 20% throughput. . . . 90
7.17 Near-field Location-aware subscribers network: CPU 20% latency standard

deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.18 Far-field location-aware subscribers network: CPU 20% Latency. . . . . . . 91
7.19 Far-field location-aware subscribers network: CPU 20% throughput. . . . . 92
7.20 Far-field location-aware subscribers network: CPU 20% latency standard

deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.21 UDP near-field location-aware subscribers network: latency. . . . . . . . . 94
7.22 UDP near-field location-aware subscribers network: throughput. . . . . . . 94
7.23 UDP near-field location-aware subscribers network: latency standard devi-

ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.24 UDP far-field location-aware subscribers network: latency. . . . . . . . . . 96
7.25 UDP far-field location-aware subscribers network: throughput. . . . . . . . 96
7.26 UDP far-field location-aware subscribers network: latency standard devia-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.27 Bloom Filter test domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.28 Far-field subscribers network latency with 1% false positive. . . . . . . . . 100



111

List of Tables

2.1 MQTT properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 AMQP properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 HTTP properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 CoAP properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Protocol comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Publisher characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Subscriber characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.1 ProxMox node configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Results Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Expected Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.4 Obtained results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99




	Abstract
	Abstract in lingua italiana
	Acknowledgements
	Contents
	Introduction
	Problem and Contribution
	Thesis Structure

	State of the Art
	Publish/Subscribe
	Subscription Models
	Network Topology
	Protocols

	Request/Response
	Protocols

	Hybrid Approaches
	Zenoh

	Comparison
	Location Awareness

	Problem Statement And Design Space
	Motivation
	Problem Statement
	Solution Space
	Location as a Topic
	Location in the Payload
	Routing
	Encoding Spatial Information

	Solution

	Design
	Overview
	Internals Design
	Zenoh Location-aware API
	REST API


	Embedding Location
	Base64
	MGRS
	Bloom Filters

	Implementation Highlights
	Zenoh Internals
	Location Key
	Base64 Key
	MGRS Key
	Bloom Filter Key

	API Wrapper
	REST Interface

	Experimental Evaluation
	Experimental Setup
	Metrics
	Baselines

	Results Overview
	Zoning Network
	Network Layout
	Results

	Near-field Location-aware Subscribers
	Network Layout
	Results

	Far-field Location-aware Subscribers
	Network Layout
	Results

	Computing Capacity
	Transport Protocol
	Bloom Filter Configuration
	Setup
	Results


	Conclusion
	Bibliography
	List of Figures
	List of Tables

